A Qualitative Study of Thermochemical Degradation Related with Concrete and Mortar Strength

José Mora-Ruacho, H. A. Monreal-Romero
{"title":"A Qualitative Study of Thermochemical Degradation Related with Concrete and Mortar Strength","authors":"José Mora-Ruacho, H. A. Monreal-Romero","doi":"10.1155/2015/502405","DOIUrl":null,"url":null,"abstract":"The nondestructive methods applied to the evaluation of concrete use different parameters to be related in the estimated resistance of concrete or other properties. The conducted study has evaluated a qualitative method of thermochemical degradation in concrete and mortar using a solvent acid whose chemical energy is capable of degrading the material. The reported study consisted in performing laboratory tests on mechanical compressive strength of concrete and mortar and thermochemical tests performed on little cores of concrete or mortar immersed in hydrochloric acid contained in a calorimeter system, obtaining several parameters as the time of thermal equilibrium, increase of temperature, degradation energy, and mass loss due to the thermochemical reaction. From the obtained results, these variables were analyzed and served as a parameter to be related with the concrete or mortar strength. The best parameter proved to be a good estimator was the increase of temperature and its degradation energy, whose value was inversely proportional to the strength of the material. Also, it is found that the most significant mechanisms that influenced the thermochemical reaction are the calcium content and the water chemically bound in the cement paste to perform the thermochemical test.","PeriodicalId":17611,"journal":{"name":"Journal: Materials","volume":"22 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal: Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/502405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The nondestructive methods applied to the evaluation of concrete use different parameters to be related in the estimated resistance of concrete or other properties. The conducted study has evaluated a qualitative method of thermochemical degradation in concrete and mortar using a solvent acid whose chemical energy is capable of degrading the material. The reported study consisted in performing laboratory tests on mechanical compressive strength of concrete and mortar and thermochemical tests performed on little cores of concrete or mortar immersed in hydrochloric acid contained in a calorimeter system, obtaining several parameters as the time of thermal equilibrium, increase of temperature, degradation energy, and mass loss due to the thermochemical reaction. From the obtained results, these variables were analyzed and served as a parameter to be related with the concrete or mortar strength. The best parameter proved to be a good estimator was the increase of temperature and its degradation energy, whose value was inversely proportional to the strength of the material. Also, it is found that the most significant mechanisms that influenced the thermochemical reaction are the calcium content and the water chemically bound in the cement paste to perform the thermochemical test.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混凝土和砂浆强度相关热化学降解的定性研究
用于评估混凝土的无损方法使用不同的参数来估计混凝土的阻力或其他性能。所进行的研究评估了一种定性的热化学降解混凝土和砂浆的方法,使用一种溶剂酸,其化学能能够降解材料。报告的研究包括对混凝土和砂浆的机械抗压强度进行实验室测试,并对浸入含有量热计系统的盐酸中的混凝土或砂浆的小芯进行热化学测试,获得热平衡时间,温度升高,降解能和热化学反应引起的质量损失等几个参数。根据得到的结果,对这些变量进行分析,并作为与混凝土或砂浆强度相关的参数。温度的升高及其降解能与材料的强度成反比,是较好的估计参数。此外,还发现影响热化学反应最重要的机制是进行热化学试验的水泥浆体中的钙含量和化学结合的水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modification of Aluminium 6063 Microstructure by Adding Boron and Titanium to Improve the Thermal Conductivity Well-Dispersed Nanoscale Zero-Valent Iron Supported in Macroporous Silica Foams: Synthesis, Characterization, and Performance in Cr(VI) Removal Investigation of Properties of Silk Fiber Produced in Ethiopia Utilizing Fullerenols as Surfactant for Carbon Nanotubes Dispersions Preparation Preparation, Characterization, and Cationic Functionalization of Cellulose-Based Aerogels for Wastewater Clarification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1