Yang Hu, Shanshan Li, Tanya Jackson, H. Moussa, N. Abidi
{"title":"Preparation, Characterization, and Cationic Functionalization of Cellulose-Based Aerogels for Wastewater Clarification","authors":"Yang Hu, Shanshan Li, Tanya Jackson, H. Moussa, N. Abidi","doi":"10.1155/2016/3186589","DOIUrl":null,"url":null,"abstract":"Aerogels are a series of materials with porous structure and light weight which can be applied to many industrial divisions as insulators, sensors, absorbents, and cushions. In this study, cellulose-based aerogels (aerocelluloses) were prepared from cellulosic material (microcrystalline cellulose) in sodium hydroxide/water solvent system followed by supercritical drying operation. The average specific surface area of aerocelluloses was 124 m2/g. The nitrogen gas (N2) adsorption/desorption isotherms revealed type H1 hysteresis loops for aerocelluloses, suggesting that aerocelluloses may possess a porous structure with cylindrically shaped pores open on both ends. FTIR and XRD analyses showed that the crystallinity of aerocelluloses was significantly decreased as compared to microcrystalline cellulose and that aerocelluloses exhibited a crystalline structure of cellulose II as compared to microcrystalline cellulose (cellulose I). To perform cationic functionalization, a cationic agent, (3-chloro-2-hydroxypropyl) trimethylammonium chloride, was used to introduce positively charged sites on aerocelluloses. The cationized aerocelluloses exhibited a strong ability to remove anionic dyes from wastewater. Highly porous and low cost aerocelluloses prepared in this study would be also promising as a fast absorbent for environmental pollutants.","PeriodicalId":17611,"journal":{"name":"Journal: Materials","volume":"7 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal: Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/3186589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
Aerogels are a series of materials with porous structure and light weight which can be applied to many industrial divisions as insulators, sensors, absorbents, and cushions. In this study, cellulose-based aerogels (aerocelluloses) were prepared from cellulosic material (microcrystalline cellulose) in sodium hydroxide/water solvent system followed by supercritical drying operation. The average specific surface area of aerocelluloses was 124 m2/g. The nitrogen gas (N2) adsorption/desorption isotherms revealed type H1 hysteresis loops for aerocelluloses, suggesting that aerocelluloses may possess a porous structure with cylindrically shaped pores open on both ends. FTIR and XRD analyses showed that the crystallinity of aerocelluloses was significantly decreased as compared to microcrystalline cellulose and that aerocelluloses exhibited a crystalline structure of cellulose II as compared to microcrystalline cellulose (cellulose I). To perform cationic functionalization, a cationic agent, (3-chloro-2-hydroxypropyl) trimethylammonium chloride, was used to introduce positively charged sites on aerocelluloses. The cationized aerocelluloses exhibited a strong ability to remove anionic dyes from wastewater. Highly porous and low cost aerocelluloses prepared in this study would be also promising as a fast absorbent for environmental pollutants.