Exploiting higher-order patterns for community detection in attributed graphs

IF 5.8 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Integrated Computer-Aided Engineering Pub Date : 2021-01-01 DOI:10.3233/ica-200645
Lun Hu, Xiangyu Pan, Hong Yan, Pengwei Hu, Tiantian He
{"title":"Exploiting higher-order patterns for community detection in attributed graphs","authors":"Lun Hu, Xiangyu Pan, Hong Yan, Pengwei Hu, Tiantian He","doi":"10.3233/ica-200645","DOIUrl":null,"url":null,"abstract":"As a fundamental task in cluster analysis, community detection is crucial for the understanding of complex network systems in many disciplines such as biology and sociology. Recently, due to the increase in the richness and variety of attribute information associated with individual nodes, detecting communities in attributed graphs becomes a more challenging problem. Most existing works focus on the similarity between pairwise nodes in terms of both structural and attribute information while ignoring the higher-order patterns involving more than two nodes. In this paper, we explore the possibility of making use of higher-order information in attributed graphs to detect communities. To do so, we first compose tensors to specifically model the higher-order patterns of interest from the aspects of network structures and node attributes, and then propose a novel algorithm to capture these patterns for community detection. Extensive experiments on several real-world datasets with varying sizes and different characteristics of attribute information demonstrated the promising performance of our algorithm.","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":"136 1","pages":"207-218"},"PeriodicalIF":5.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ica-200645","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 12

Abstract

As a fundamental task in cluster analysis, community detection is crucial for the understanding of complex network systems in many disciplines such as biology and sociology. Recently, due to the increase in the richness and variety of attribute information associated with individual nodes, detecting communities in attributed graphs becomes a more challenging problem. Most existing works focus on the similarity between pairwise nodes in terms of both structural and attribute information while ignoring the higher-order patterns involving more than two nodes. In this paper, we explore the possibility of making use of higher-order information in attributed graphs to detect communities. To do so, we first compose tensors to specifically model the higher-order patterns of interest from the aspects of network structures and node attributes, and then propose a novel algorithm to capture these patterns for community detection. Extensive experiments on several real-world datasets with varying sizes and different characteristics of attribute information demonstrated the promising performance of our algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用高阶模式在属性图中进行社区检测
作为聚类分析的一项基本任务,群落检测在生物学和社会学等学科中对复杂网络系统的理解至关重要。近年来,由于与单个节点相关的属性信息的丰富性和多样性的增加,在属性图中检测社区成为一个更具挑战性的问题。大多数现有的工作都侧重于两两节点之间在结构和属性信息方面的相似性,而忽略了涉及两个以上节点的高阶模式。在本文中,我们探索了利用属性图中的高阶信息来检测社区的可能性。为此,我们首先组成张量,从网络结构和节点属性方面对感兴趣的高阶模式进行具体建模,然后提出一种新的算法来捕获这些模式以进行社区检测。在几个具有不同大小和不同属性信息特征的真实数据集上进行的大量实验表明,我们的算法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Integrated Computer-Aided Engineering
Integrated Computer-Aided Engineering 工程技术-工程:综合
CiteScore
9.90
自引率
21.50%
发文量
21
审稿时长
>12 weeks
期刊介绍: Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal. The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.
期刊最新文献
A parametric and feature-based CAD dataset to support human-computer interaction for advanced 3D shape learning A high-level simulator for Network-on-Chip Efficient surface defect detection in industrial screen printing with minimized labeling effort Battery parameter identification for unmanned aerial vehicles with hybrid power system Effectiveness of deep learning techniques in TV programs classification: A comparative analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1