Co-Design and Optimization of a 320 GHz On-Chip Antenna for THz detection in 65nm CMOS Technology

G. Quarta, M. Perenzoni, S. D’Amico
{"title":"Co-Design and Optimization of a 320 GHz On-Chip Antenna for THz detection in 65nm CMOS Technology","authors":"G. Quarta, M. Perenzoni, S. D’Amico","doi":"10.1109/ICICDT51558.2021.9626470","DOIUrl":null,"url":null,"abstract":"This paper presents design and optimization techniques to develop an on-chip array-feasible antenna for Terahertz (THz) detection at 320GHz using 65nm CMOS technology. Trade-offs between detector dimensions, thermal noise, and impedance matching have been considered, as well as design challenges related to manufacturing rules. The chosen antenna is a bow-tie and a ground plane has been employed to reduce substrates losses. Despite the complexity of achieving a high radiation efficiency erad, these techniques allow to obtain a good matching and efficiency that brings to a high responsivity for the detector. The effectiveness of these techniques has been validated using simulation results.","PeriodicalId":6737,"journal":{"name":"2021 International Conference on IC Design and Technology (ICICDT)","volume":"23 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on IC Design and Technology (ICICDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICDT51558.2021.9626470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents design and optimization techniques to develop an on-chip array-feasible antenna for Terahertz (THz) detection at 320GHz using 65nm CMOS technology. Trade-offs between detector dimensions, thermal noise, and impedance matching have been considered, as well as design challenges related to manufacturing rules. The chosen antenna is a bow-tie and a ground plane has been employed to reduce substrates losses. Despite the complexity of achieving a high radiation efficiency erad, these techniques allow to obtain a good matching and efficiency that brings to a high responsivity for the detector. The effectiveness of these techniques has been validated using simulation results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于65nm CMOS技术的320 GHz太赫兹探测片上天线协同设计与优化
本文介绍了采用65nm CMOS技术开发320GHz太赫兹(THz)探测的片上阵列可行天线的设计和优化技术。考虑了探测器尺寸、热噪声和阻抗匹配之间的权衡,以及与制造规则相关的设计挑战。所选天线为领结天线,并采用接地面以减少基板损耗。尽管实现高辐射效率的复杂性,但这些技术允许获得良好的匹配和效率,从而为探测器带来高响应。仿真结果验证了这些技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Device engineering guidelines for performance boost in IGZO front gated TFTs based on defect control Design process interactions in shallow trench isolation chemical mechanical planarization for layout diversification and design optimization Approaches for Optimizing Near Infrared Si Photodetectors Based on Internal Photoemission Deterministic Tagging Technology for Device Authentication Robust Training of Optical Neural Network with Practical Errors using Genetic Algorithm: A Case Study in Silicon-on-Insulator-Based Photonic Integrated Chips
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1