Global Disruption of Semiconductor Supply Chains During COVID-19: An Evaluation of Leading Causal Factors

Aamirah Mohammed, Sardar Asif Khan
{"title":"Global Disruption of Semiconductor Supply Chains During COVID-19: An Evaluation of Leading Causal Factors","authors":"Aamirah Mohammed, Sardar Asif Khan","doi":"10.1115/msec2022-85306","DOIUrl":null,"url":null,"abstract":"\n The coronavirus pandemic has caused unprecedented supply chain disruptions globally, resulting in a heightened need for supply chain resilience. Particularly in the case of semiconductor chips, a commodity already in high demand, the existing challenges in supply chains have been aggravated by the pandemic. This global shortage is resulting in manufacturing disruptions across multiple sectors from automobiles to electronics. The global automobile industry alone is said to suffer a $210 billion loss in revenue from chip shortages. This highlights the cruciality of scientifically analyzing and building solutions that addresses the issue of resiliency of global semiconductor supply chains. While several news articles and white papers have reported this issue, there has been a lack of scientific literature on this topic. The objective of this paper is to identify the factors causing semiconductor shortage, analyze, and quantify their impact on the supply chain. This paper identifies 20 factors under 4 major categories from pre- and post-pandemic era, in the period ranging from 2018 to 2021, that have contributed to this disruption. The categories are: geopolitical tensions, natural disasters, logistics challenges and COVID-19 pandemic. The factors are ranked using the Analytical Hierarchy Process (AHP) methodology. The scientific value of this study lies in its contribution of quantifying and ranking the impact of the individual factors leading to the recent disruption in semiconductor supply chains. The results of this study will provide supply chain managers with the analytical information necessary for enabling resilient semiconductor supply chains as they navigate through these current challenges.","PeriodicalId":23676,"journal":{"name":"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The coronavirus pandemic has caused unprecedented supply chain disruptions globally, resulting in a heightened need for supply chain resilience. Particularly in the case of semiconductor chips, a commodity already in high demand, the existing challenges in supply chains have been aggravated by the pandemic. This global shortage is resulting in manufacturing disruptions across multiple sectors from automobiles to electronics. The global automobile industry alone is said to suffer a $210 billion loss in revenue from chip shortages. This highlights the cruciality of scientifically analyzing and building solutions that addresses the issue of resiliency of global semiconductor supply chains. While several news articles and white papers have reported this issue, there has been a lack of scientific literature on this topic. The objective of this paper is to identify the factors causing semiconductor shortage, analyze, and quantify their impact on the supply chain. This paper identifies 20 factors under 4 major categories from pre- and post-pandemic era, in the period ranging from 2018 to 2021, that have contributed to this disruption. The categories are: geopolitical tensions, natural disasters, logistics challenges and COVID-19 pandemic. The factors are ranked using the Analytical Hierarchy Process (AHP) methodology. The scientific value of this study lies in its contribution of quantifying and ranking the impact of the individual factors leading to the recent disruption in semiconductor supply chains. The results of this study will provide supply chain managers with the analytical information necessary for enabling resilient semiconductor supply chains as they navigate through these current challenges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2019冠状病毒病期间半导体供应链的全球中断:主要原因评估
冠状病毒大流行在全球范围内造成了前所未有的供应链中断,从而提高了对供应链弹性的需求。特别是对于需求已经很高的半导体芯片而言,供应链中的现有挑战因疫情而加剧。这种全球短缺导致从汽车到电子等多个行业的生产中断。据说,仅全球汽车工业就因芯片短缺而遭受了2100亿美元的收入损失。这凸显了科学分析和构建解决全球半导体供应链弹性问题的解决方案的重要性。虽然有几篇新闻文章和白皮书报道了这一问题,但一直缺乏关于这一主题的科学文献。本文的目的是确定导致半导体短缺的因素,分析并量化其对供应链的影响。本文确定了2018年至2021年期间大流行前和大流行后的4大类20个因素,这些因素导致了这种破坏。这些类别包括:地缘政治紧张局势、自然灾害、物流挑战和COVID-19大流行。使用层次分析法(AHP)对这些因素进行排名。本研究的科学价值在于它对导致最近半导体供应链中断的各个因素的影响进行了量化和排名。本研究的结果将为供应链管理者提供必要的分析信息,以使半导体供应链在应对这些当前挑战时具有弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physical and sensory properties of burgers affected by different dry ageing time of beef neck Inovacija proizvoda HRZZ projekta “Inovativni funkcionalni proizvodi od janjećeg mesa“ Bioaktivni peptidi u pršutima Samodostatnost u proizvodnji svinjskog mesa u Republici Hrvatskoj Policiklički aromatski ugljikovodici (PAH) u tradicionalno dimljenim mesnim proizvodima
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1