P-GTM: privacy-preserving google tri-gram method for semantic text similarity

O. Davison, A. Mohammad, E. Milios
{"title":"P-GTM: privacy-preserving google tri-gram method for semantic text similarity","authors":"O. Davison, A. Mohammad, E. Milios","doi":"10.1145/2644866.2644882","DOIUrl":null,"url":null,"abstract":"This paper presents P-GTM, a privacy-preserving text similarity algorithm that extends the Google Tri-gram Method (GTM). The Google Tri-gram Method is a high-performance unsupervised semantic text similarity method based on the use of context from the Google Web 1T n-gram dataset. P-GTM computes the semantic similarity between two input bag-of-words documents on public cloud hardware, without disclosing the documents' contents. Like the GTM, P-GTM requires the uni-gram and tri-gram lists from the Google Web 1T n-gram dataset as additional inputs. The need for these additional lists makes private computation of GTM text similarities a challenging problem. P-GTM uses a combination of pre-computation, encryption, and randomized preprocessing to enable private computation of text similarities using the GTM. We discuss the security of the algorithm and quantify its privacy using standard and real life corpora.","PeriodicalId":91385,"journal":{"name":"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering","volume":"33 1","pages":"81-84"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2644866.2644882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents P-GTM, a privacy-preserving text similarity algorithm that extends the Google Tri-gram Method (GTM). The Google Tri-gram Method is a high-performance unsupervised semantic text similarity method based on the use of context from the Google Web 1T n-gram dataset. P-GTM computes the semantic similarity between two input bag-of-words documents on public cloud hardware, without disclosing the documents' contents. Like the GTM, P-GTM requires the uni-gram and tri-gram lists from the Google Web 1T n-gram dataset as additional inputs. The need for these additional lists makes private computation of GTM text similarities a challenging problem. P-GTM uses a combination of pre-computation, encryption, and randomized preprocessing to enable private computation of text similarities using the GTM. We discuss the security of the algorithm and quantify its privacy using standard and real life corpora.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
P-GTM:语义文本相似度的隐私保护google三图方法
本文提出了一种保护隐私的文本相似度算法P-GTM,它扩展了谷歌三图方法(GTM)。谷歌三图方法是一种高性能的无监督语义文本相似度方法,该方法基于使用谷歌Web 1T n-图数据集的上下文。P-GTM在公有云硬件上计算两个输入词袋文档之间的语义相似度,而不披露文档的内容。与GTM一样,P-GTM需要b谷歌Web 1T n-gram数据集中的一元和三元列表作为额外输入。对这些附加列表的需求使得GTM文本相似度的私有计算成为一个具有挑战性的问题。P-GTM使用预计算、加密和随机预处理的组合来支持使用GTM进行文本相似度的私有计算。我们讨论了该算法的安全性,并使用标准和现实生活中的语料库量化了其隐私性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Notarial Archives, Valletta: Starting from Zero Truncation: all the news that fits we'll print Classifying and ranking search engine results as potential sources of plagiarism An ensemble approach for text document clustering using Wikipedia concepts Document changes: modeling, detection, storage and visualization (DChanges 2014)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1