I. A. Wonnie Ma, G. Ong, Ammar Shafaamri, Julie Nabilah Jamalludin, Nina Nazirah Ishun, Ramesh Kasi, R. Subramaniam
{"title":"Evaluation of natural oil polyol hydrophobic acrylic-based coating incorporated with SiO2 nanoparticles for enhanced corrosion protection","authors":"I. A. Wonnie Ma, G. Ong, Ammar Shafaamri, Julie Nabilah Jamalludin, Nina Nazirah Ishun, Ramesh Kasi, R. Subramaniam","doi":"10.1108/prt-07-2022-0092","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis study aims to fabricate the acrylic-based polymeric composite coating with a hydrophobic surface associated with natural oil polyol (NOP) and polydimethylsiloxane with the incorporation of 3 Wt.% SiO2 nanoparticle (SiO2np) against the corrosive NaCl media.\n\n\nDesign/methodology/approach\nThe structural properties of the formulated polymeric composite coatings were investigated by using Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, water contact angle (WCA) and cross-hatch (X-Hatch) tests. The WCA measurement was used to study the surface wettability of the formulated polymeric composite coatings. The corrosion protection performance of the nanocomposite coated on the mild steel substrate was studied by immersing the samples in 3.5 Wt.% NaCl solution for 30 days using electrochemical impedance spectroscopy.\n\n\nFindings\nThe enhanced polymeric composite coating system performed with an excellent increase in the WCA up to 111.1° which is good hydrophobic nature and very high coating resistance in the range of 1010 Ω attributed to the superiority of SiO2np.\n\n\nOriginality/value\nThe incorporation of SiO2np into the polymeric coating could enhance the surface roughness and hydrophobic properties that could increase corrosion protection. This approach is a novel attempt of using NOP along with the addition of SiO2np.\n","PeriodicalId":20147,"journal":{"name":"Pigment & Resin Technology","volume":"327 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pigment & Resin Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/prt-07-2022-0092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This study aims to fabricate the acrylic-based polymeric composite coating with a hydrophobic surface associated with natural oil polyol (NOP) and polydimethylsiloxane with the incorporation of 3 Wt.% SiO2 nanoparticle (SiO2np) against the corrosive NaCl media.
Design/methodology/approach
The structural properties of the formulated polymeric composite coatings were investigated by using Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, water contact angle (WCA) and cross-hatch (X-Hatch) tests. The WCA measurement was used to study the surface wettability of the formulated polymeric composite coatings. The corrosion protection performance of the nanocomposite coated on the mild steel substrate was studied by immersing the samples in 3.5 Wt.% NaCl solution for 30 days using electrochemical impedance spectroscopy.
Findings
The enhanced polymeric composite coating system performed with an excellent increase in the WCA up to 111.1° which is good hydrophobic nature and very high coating resistance in the range of 1010 Ω attributed to the superiority of SiO2np.
Originality/value
The incorporation of SiO2np into the polymeric coating could enhance the surface roughness and hydrophobic properties that could increase corrosion protection. This approach is a novel attempt of using NOP along with the addition of SiO2np.