A. P. Hutama, M. Arinawati, E. Apriliyani, Y. R. Azinuddin, C. Yudha
{"title":"LiCoO2 Cathode Material Prepared through Two Step Sintering Process","authors":"A. P. Hutama, M. Arinawati, E. Apriliyani, Y. R. Azinuddin, C. Yudha","doi":"10.20961/esta.v1i1.56800","DOIUrl":null,"url":null,"abstract":"LiCoO2 cathode material has been continuously applied in commercial LIBs cells. It has high gravimetric and volumetric density. In this research, an economical approach to obtain LiCoO2 is proposed. Pure cobalt oxide (Co3O4) precursor was obtained via atmospheric precipitation of cobalt sulfate and thermal decomposition of the as-obtained hydroxide precursor. The next heat treatment was performed to obtain LiCoO2 powder. To investigate the characteristic of the precursor and the final product, XRD, FTIR, and SEM analysis were conducted. The final product has hexagonal structure and quasi spherical morphology. The size of the particle is in micron. The charge-discharge analysis of LiCoO2 was conducted in LiCoO2/Graphite system where the initial capacity of LiCoO2 is 120 mAh/g at the current density of 0.1 C (20 mA/g). Overall, this method can be used for large scale LiCoO2 cell production.","PeriodicalId":11676,"journal":{"name":"Energy Storage Technology and Applications","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20961/esta.v1i1.56800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
LiCoO2 cathode material has been continuously applied in commercial LIBs cells. It has high gravimetric and volumetric density. In this research, an economical approach to obtain LiCoO2 is proposed. Pure cobalt oxide (Co3O4) precursor was obtained via atmospheric precipitation of cobalt sulfate and thermal decomposition of the as-obtained hydroxide precursor. The next heat treatment was performed to obtain LiCoO2 powder. To investigate the characteristic of the precursor and the final product, XRD, FTIR, and SEM analysis were conducted. The final product has hexagonal structure and quasi spherical morphology. The size of the particle is in micron. The charge-discharge analysis of LiCoO2 was conducted in LiCoO2/Graphite system where the initial capacity of LiCoO2 is 120 mAh/g at the current density of 0.1 C (20 mA/g). Overall, this method can be used for large scale LiCoO2 cell production.
LiCoO2正极材料在商用锂离子电池中得到了不断的应用。它有很高的重量和体积密度。在本研究中,提出了一种经济的方法来获得LiCoO2。通过大气沉淀硫酸钴和热分解所得氢氧化物前驱体得到纯氧化钴(Co3O4)前驱体。再进行热处理,得到LiCoO2粉末。为了研究前驱体和最终产物的特性,进行了XRD、FTIR和SEM分析。最终产品具有六边形结构和准球形形貌。粒子的大小以微米为单位。在LiCoO2/石墨体系中,LiCoO2的初始容量为120 mAh/g,电流密度为0.1 C (20 mA/g),对LiCoO2进行充放电分析。总体而言,该方法可用于大规模生产LiCoO-2电池。