Product Classification Using Neural Network at Industry Robotic Line

I. Halenár, Gabriela Križanová
{"title":"Product Classification Using Neural Network at Industry Robotic Line","authors":"I. Halenár, Gabriela Križanová","doi":"10.2478/rput-2019-0026","DOIUrl":null,"url":null,"abstract":"Abstract The article describes a possible way of implementing a neural network in recognizing the shape and position of the products in the production process. The neural network is designed as a multilayer perceptron (MLP), and the whole system is implemented in a form of attachment to robotic arm, where the primary task of neural network is to distinguish a position of product. The neural network is trained like a classifier and outputs are used to control the robot. The advantage of the solution is a high degree of reliability of product positioning under different lighting conditions.","PeriodicalId":21013,"journal":{"name":"Research Papers Faculty of Materials Science and Technology Slovak University of Technology","volume":"185 1","pages":"55 - 63"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Papers Faculty of Materials Science and Technology Slovak University of Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rput-2019-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The article describes a possible way of implementing a neural network in recognizing the shape and position of the products in the production process. The neural network is designed as a multilayer perceptron (MLP), and the whole system is implemented in a form of attachment to robotic arm, where the primary task of neural network is to distinguish a position of product. The neural network is trained like a classifier and outputs are used to control the robot. The advantage of the solution is a high degree of reliability of product positioning under different lighting conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络在工业机器人生产线上的产品分类
摘要本文描述了在生产过程中实现神经网络识别产品形状和位置的一种可能方法。神经网络被设计成多层感知器(MLP),整个系统以附着在机械臂上的形式实现,其中神经网络的主要任务是识别产品的位置。神经网络像分类器一样被训练,输出用于控制机器人。该解决方案的优点是在不同照明条件下产品定位的高度可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of the Development of Postal Services in European Countries, with a Special Focus on Serbia and Slovakia The Impact of the Covid-19 Pandemic on Human Resource Management Priorities Gender Equality Perception in Industrial Enterprises Under the Conditions of Industry 4.0 Sustainability Reporting and Earnings Management of Listed Non-Financial Firms in Nigeria Agile Manufacturing vs. Lean Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1