Locality preserving binary face representations using auto-encoders

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IET Biometrics Pub Date : 2022-10-10 DOI:10.1049/bme2.12096
Mohamed Amine Hmani, Dijana Petrovska-Delacrétaz, Bernadette Dorizzi
{"title":"Locality preserving binary face representations using auto-encoders","authors":"Mohamed Amine Hmani,&nbsp;Dijana Petrovska-Delacrétaz,&nbsp;Bernadette Dorizzi","doi":"10.1049/bme2.12096","DOIUrl":null,"url":null,"abstract":"<p>Crypto-biometric schemes, such as fuzzy commitment, require binary sources. A novel approach to binarising biometric data using Deep Neural Networks applied to facial biometric data is introduced. The binary representations are evaluated on the MOBIO and the Labelled Faces in the Wild databases, where their biometric recognition performance and entropy are measured. The proposed binary embeddings give a state-of-the-art performance on both databases with almost negligible degradation compared to the baseline. The representations' length can be controlled. Using a pretrained convolutional neural network and training the model on a cleaned version of the MS-celeb-1M database, binary representations of length 4096 bits and 3300 bits of entropy are obtained. The extracted representations have high entropy and are long enough to be used in crypto-biometric systems, such as fuzzy commitment. Furthermore, the proposed approach is data-driven and constitutes a locality preserving hashing that can be leveraged for data clustering and similarity searches. As a use case of the binary representations, a cancellable system is created based on the binary embeddings using a shuffling transformation with a randomisation key as a second factor.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"11 5","pages":"445-458"},"PeriodicalIF":1.8000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12096","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bme2.12096","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Crypto-biometric schemes, such as fuzzy commitment, require binary sources. A novel approach to binarising biometric data using Deep Neural Networks applied to facial biometric data is introduced. The binary representations are evaluated on the MOBIO and the Labelled Faces in the Wild databases, where their biometric recognition performance and entropy are measured. The proposed binary embeddings give a state-of-the-art performance on both databases with almost negligible degradation compared to the baseline. The representations' length can be controlled. Using a pretrained convolutional neural network and training the model on a cleaned version of the MS-celeb-1M database, binary representations of length 4096 bits and 3300 bits of entropy are obtained. The extracted representations have high entropy and are long enough to be used in crypto-biometric systems, such as fuzzy commitment. Furthermore, the proposed approach is data-driven and constitutes a locality preserving hashing that can be leveraged for data clustering and similarity searches. As a use case of the binary representations, a cancellable system is created based on the binary embeddings using a shuffling transformation with a randomisation key as a second factor.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用自编码器保持局部性的二进制面表示
密码生物识别方案,如模糊承诺,需要二进制源。介绍了一种将深度神经网络应用于面部生物特征数据二值化的新方法。在MOBIO和Wild数据库中的labeled Faces上评估二元表示,并测量其生物特征识别性能和熵。与基线相比,所提出的二进制嵌入在两个数据库上都提供了最先进的性能,几乎可以忽略不计。表示的长度可以被控制。使用预训练的卷积神经网络,并在ms - celebrity - 1m数据库的清洗版本上训练模型,得到了长度为4096位和熵为3300位的二进制表示。提取的表征具有高熵和足够长的时间,可以用于加密生物识别系统,如模糊承诺。此外,所提出的方法是数据驱动的,并构成了可用于数据聚类和相似性搜索的局部保留散列。作为二进制表示的一个用例,基于二进制嵌入使用随机化键作为第二个因素的洗牌变换来创建一个可取消的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Biometrics
IET Biometrics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍: The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding. The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies: Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.) Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches Soft biometrics and information fusion for identification, verification and trait prediction Human factors and the human-computer interface issues for biometric systems, exception handling strategies Template construction and template management, ageing factors and their impact on biometric systems Usability and user-oriented design, psychological and physiological principles and system integration Sensors and sensor technologies for biometric processing Database technologies to support biometric systems Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection Biometric cryptosystems, security and biometrics-linked encryption Links with forensic processing and cross-disciplinary commonalities Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated Applications and application-led considerations Position papers on technology or on the industrial context of biometric system development Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions Relevant ethical and social issues
期刊最新文献
A Multimodal Biometric Recognition Method Based on Federated Learning Deep and Shallow Feature Fusion in Feature Score Level for Palmprint Recognition Research on TCN Model Based on SSARF Feature Selection in the Field of Human Behavior Recognition A Finger Vein Recognition Algorithm Based on the Histogram of Variable Curvature Directional Binary Statistics A Survey on Automatic Face Recognition Using Side-View Face Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1