D. Lackner, J. Schwar, F. Dimroth, J. Schön, R. Lang, B. Godejohann, F. Predan, M. Schachtner, B. Boizot, J. Lefèvre, C. Flötgen
{"title":"Radiation hard four-junction space solar cell based on GaInAsP alloys","authors":"D. Lackner, J. Schwar, F. Dimroth, J. Schön, R. Lang, B. Godejohann, F. Predan, M. Schachtner, B. Boizot, J. Lefèvre, C. Flötgen","doi":"10.1109/ESPC.2019.8932035","DOIUrl":null,"url":null,"abstract":"Electric orbit raising increases the radiation dose for space solar arrays significantly. This leads to the need for a more radiation resistant, highly efficient space solar cell. We propose a new wafer-bonded 4-junction structure which allows reaching begin-of-life efficiencies up to 34.7% (AMO) and efficiencies up to 30.8% (AMO) after 1*1015 cm−2 1-MeV electron irradiation. The high radiation hardness is a result of specific material properties of InP-rich compounds which benefit from significant defect annealing under typical operating conditions in space. A new four-j unction space solar cell, based on high InP fractions containing GaInAsP and Ge is currently under development in the EU project RadHard and first devices achieve an efficiency of 21.4% (AM0) before irradiation. After irradiation, as expected, a strong annealing effect after 3 days at AM0 & 60°C is found for this device. Already at this early development stage 78% of the end of life open circuit target voltage of 3.09 V under AM0 has been reached.","PeriodicalId":6734,"journal":{"name":"2019 European Space Power Conference (ESPC)","volume":"7 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Space Power Conference (ESPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESPC.2019.8932035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Electric orbit raising increases the radiation dose for space solar arrays significantly. This leads to the need for a more radiation resistant, highly efficient space solar cell. We propose a new wafer-bonded 4-junction structure which allows reaching begin-of-life efficiencies up to 34.7% (AMO) and efficiencies up to 30.8% (AMO) after 1*1015 cm−2 1-MeV electron irradiation. The high radiation hardness is a result of specific material properties of InP-rich compounds which benefit from significant defect annealing under typical operating conditions in space. A new four-j unction space solar cell, based on high InP fractions containing GaInAsP and Ge is currently under development in the EU project RadHard and first devices achieve an efficiency of 21.4% (AM0) before irradiation. After irradiation, as expected, a strong annealing effect after 3 days at AM0 & 60°C is found for this device. Already at this early development stage 78% of the end of life open circuit target voltage of 3.09 V under AM0 has been reached.