{"title":"Trends in high‐throughput and functional neuroimaging in Caenorhabditis elegans","authors":"Yongmin Cho, Charles L. Zhao, Hang Lu","doi":"10.1002/wsbm.1376","DOIUrl":null,"url":null,"abstract":"The nervous system of Caenorhabditis elegans is an important model system for understanding the development and function of larger, more complex nervous systems. It is prized for its ease of handling, rapid life cycle, and stereotyped, well‐cataloged development, with the development of all 302 neurons mapped all the way from zygote to adult. The combination of easy genetic manipulation and optical transparency of the worm allows for the direct imaging of its interior with fluorescent microscopy, without physically compromising the normal physiology of the animal itself. By expressing fluorescent markers, biologists study many developmental and cell biology questions in vivo; by expressing genetically encoded fluorescent calcium indicators within neurons, it is also possible to monitor their dynamic activity, answering questions about the structure and function of neural microcircuitry in the worm. However, to successfully image the worm it is necessary to overcome a number of experimental challenges. It is necessary to hold worms within the field of view, collect images efficiently and rapidly, and robustly analyze the data obtained. In recent years, a trend has developed toward imaging a large number of worms or neurons simultaneously, directly exploiting the unique properties of C. elegans to acquire data on a scale, which is not possible in other organisms. Doing this has required the development of new experimental tools, techniques, and data analytic approaches, all of which come together to open new perspectives on the field of neurobiology in C. elegans, and neuroscience in general. WIREs Syst Biol Med 2017, 9:e1376. doi: 10.1002/wsbm.1376","PeriodicalId":49254,"journal":{"name":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","volume":"37 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wsbm.1376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 18
Abstract
The nervous system of Caenorhabditis elegans is an important model system for understanding the development and function of larger, more complex nervous systems. It is prized for its ease of handling, rapid life cycle, and stereotyped, well‐cataloged development, with the development of all 302 neurons mapped all the way from zygote to adult. The combination of easy genetic manipulation and optical transparency of the worm allows for the direct imaging of its interior with fluorescent microscopy, without physically compromising the normal physiology of the animal itself. By expressing fluorescent markers, biologists study many developmental and cell biology questions in vivo; by expressing genetically encoded fluorescent calcium indicators within neurons, it is also possible to monitor their dynamic activity, answering questions about the structure and function of neural microcircuitry in the worm. However, to successfully image the worm it is necessary to overcome a number of experimental challenges. It is necessary to hold worms within the field of view, collect images efficiently and rapidly, and robustly analyze the data obtained. In recent years, a trend has developed toward imaging a large number of worms or neurons simultaneously, directly exploiting the unique properties of C. elegans to acquire data on a scale, which is not possible in other organisms. Doing this has required the development of new experimental tools, techniques, and data analytic approaches, all of which come together to open new perspectives on the field of neurobiology in C. elegans, and neuroscience in general. WIREs Syst Biol Med 2017, 9:e1376. doi: 10.1002/wsbm.1376
期刊介绍:
Journal Name:Wiley Interdisciplinary Reviews-Systems Biology and Medicine
Focus:
Strong interdisciplinary focus
Serves as an encyclopedic reference for systems biology research
Conceptual Framework:
Systems biology asserts the study of organisms as hierarchical systems or networks
Individual biological components interact in complex ways within these systems
Article Coverage:
Discusses biology, methods, and models
Spans systems from a few molecules to whole species
Topical Coverage:
Developmental Biology
Physiology
Biological Mechanisms
Models of Systems, Properties, and Processes
Laboratory Methods and Technologies
Translational, Genomic, and Systems Medicine