Implementation of Graph Convolution Network Based on Analog Rram

Daqin Chen, Zongwei Wang, Shengyu Bao, Yimao Cai, Ru Huang
{"title":"Implementation of Graph Convolution Network Based on Analog Rram","authors":"Daqin Chen, Zongwei Wang, Shengyu Bao, Yimao Cai, Ru Huang","doi":"10.1109/CSTIC49141.2020.9282441","DOIUrl":null,"url":null,"abstract":"In this work, the implementation of Graph Convolutional Network (GCN) based on resistive switching memory is demonstrated through simulation. After training, the RRAM-based GCN can process a semi-supervised graph classification task. Further, the impacts of read noises and circuit bit-precision on the performance of GCN are analyzed. Results show the proposed GCN can reach high accuracy when bit-precisions; 4-bit. Moreover, read noise can severely affect accuracy.","PeriodicalId":6848,"journal":{"name":"2020 China Semiconductor Technology International Conference (CSTIC)","volume":"46 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 China Semiconductor Technology International Conference (CSTIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSTIC49141.2020.9282441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, the implementation of Graph Convolutional Network (GCN) based on resistive switching memory is demonstrated through simulation. After training, the RRAM-based GCN can process a semi-supervised graph classification task. Further, the impacts of read noises and circuit bit-precision on the performance of GCN are analyzed. Results show the proposed GCN can reach high accuracy when bit-precisions; 4-bit. Moreover, read noise can severely affect accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模拟存储器的图卷积网络的实现
本文通过仿真演示了基于电阻式开关存储器的图形卷积网络(GCN)的实现。经过训练,基于rram的GCN可以处理半监督图分类任务。进一步分析了读噪声和电路位精度对GCN性能的影响。结果表明,在位精度较高的情况下,GCN可以达到较高的精度;4比特。此外,读取噪声会严重影响准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Bonded Ball Shape on Gold Wire Bonding Quality Based on ANSYS/LS-DYNA Simulation Optimization on Deposition of Aluminum Nitride by Pulsed Direct Current Reactive Magnetron Sputtering A Novel Vertical Closed-Loop Control Method for High Generation TFT Lithography Machine Surface Smoothing and Roughening Effects of High-K Dielectric Materials Deposited by Atomic Layer Deposition and Their Significance for MIM Capacitors Used in Dram Technology Part II A Simulation Study for Typical Design Rule Patterns and Stochastic Printing Failures in a 5 nm Logic Process with EUV Lithography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1