{"title":"Risk-Averse Regret Minimization in Multistage Stochastic Programs","authors":"Mehran Poursoltani, E. Delage, A. Georghiou","doi":"10.1287/opre.2022.2429","DOIUrl":null,"url":null,"abstract":"Regret minimization has gained popularity in a wide range of decision-making problems under uncertainty because of its capacity to identify more opportunistic solutions than worst-case value optimization. Unfortunately, the rigidity of current worst-case regret models and scarcity of tractable solution methods have been serious obstacles in multistage applications. In “Risk-Averse Regret Minimization in Multistage Stochastic Programs,” M. Poursoltani, E. Delage, and A. Georghiou consider a multistage stochastic programming setting with a discrete scenario tree. They introduce the notion of the Δ-regret model, which bridges between the ex ante and ex post regret minimization paradigms that are currently used in the regret minimization literature for single-stage problems. The notion of Δ-regret minimization is investigated for the first time both theoretically and numerically in order to better understand its behavior under a set of popular risk measures.","PeriodicalId":49809,"journal":{"name":"Military Operations Research","volume":"76 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2022.2429","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
Regret minimization has gained popularity in a wide range of decision-making problems under uncertainty because of its capacity to identify more opportunistic solutions than worst-case value optimization. Unfortunately, the rigidity of current worst-case regret models and scarcity of tractable solution methods have been serious obstacles in multistage applications. In “Risk-Averse Regret Minimization in Multistage Stochastic Programs,” M. Poursoltani, E. Delage, and A. Georghiou consider a multistage stochastic programming setting with a discrete scenario tree. They introduce the notion of the Δ-regret model, which bridges between the ex ante and ex post regret minimization paradigms that are currently used in the regret minimization literature for single-stage problems. The notion of Δ-regret minimization is investigated for the first time both theoretically and numerically in order to better understand its behavior under a set of popular risk measures.
期刊介绍:
Military Operations Research is a peer-reviewed journal of high academic quality. The Journal publishes articles that describe operations research (OR) methodologies and theories used in key military and national security applications. Of particular interest are papers that present: Case studies showing innovative OR applications Apply OR to major policy issues Introduce interesting new problems areas Highlight education issues Document the history of military and national security OR.