Making Hydrogel with Crosslinked Reactions between Chitosan and Dialdehyide Cellulose from Coconut Fiber as Wound Healers

F. Sebayang, Rumondang Bulan, Emma Zaidar Nasution, M. Z. E. Sinaga, W. A. Putri
{"title":"Making Hydrogel with Crosslinked Reactions between Chitosan and Dialdehyide Cellulose from Coconut Fiber as Wound Healers","authors":"F. Sebayang, Rumondang Bulan, Emma Zaidar Nasution, M. Z. E. Sinaga, W. A. Putri","doi":"10.5220/0008869402040210","DOIUrl":null,"url":null,"abstract":": Making hydrogels from crosslinked reactions between cellulose oxidized with chitosan through Schiff base formation reaction has been investigated as a wound healing drug in vivo. α-Cellulose obtained from the isolation of coconut fiber by 14.24 g. α-Cellulose is oxidized by using KIO 4 to be dialdehyde cellulose. The degree of oxidation of cellulose dialdehyde is 86%. Hydrogels were made by schiff base crosslinking reaction between chitosan and dialdehyde cellulose with temperature variations of 75, 100, 125 and 150 oC. The optimum temperature in hydrogel synthesis is 100 oC. the formation of a hydrogel is supported by the presence of FTIR Spectrophotometer where the spectrum of 1643.35 cm-1 is formed where the group -C=N- which shows the formation of a Schiff base reaction. The hydrogel that is obtained has a good swelling ability of more than 1000%. Invivo analysis was carried out for 7 days in mice and as a result, the injured mice have recovered and have not left a mark.","PeriodicalId":20533,"journal":{"name":"Proceedings of the 1st International Conference on Chemical Science and Technology Innovation","volume":"91 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Conference on Chemical Science and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0008869402040210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

: Making hydrogels from crosslinked reactions between cellulose oxidized with chitosan through Schiff base formation reaction has been investigated as a wound healing drug in vivo. α-Cellulose obtained from the isolation of coconut fiber by 14.24 g. α-Cellulose is oxidized by using KIO 4 to be dialdehyde cellulose. The degree of oxidation of cellulose dialdehyde is 86%. Hydrogels were made by schiff base crosslinking reaction between chitosan and dialdehyde cellulose with temperature variations of 75, 100, 125 and 150 oC. The optimum temperature in hydrogel synthesis is 100 oC. the formation of a hydrogel is supported by the presence of FTIR Spectrophotometer where the spectrum of 1643.35 cm-1 is formed where the group -C=N- which shows the formation of a Schiff base reaction. The hydrogel that is obtained has a good swelling ability of more than 1000%. Invivo analysis was carried out for 7 days in mice and as a result, the injured mice have recovered and have not left a mark.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
壳聚糖与椰子纤维二醛纤维素交联反应制备伤口愈合水凝胶
研究了纤维素与壳聚糖氧化后通过席夫碱形成反应交联制备水凝胶作为伤口愈合药物的实验研究。从椰子纤维中分离得到14.24 g α-纤维素,α-纤维素经KIO 4氧化得到双醛纤维素。纤维素二醛的氧化度为86%。壳聚糖与双醛纤维素在75、100、125、150℃温度下进行希夫碱交联反应制备水凝胶。水凝胶合成的最佳温度为100℃。FTIR分光光度计的存在支持了水凝胶的形成,在- c =N-基团处形成了1643.35 cm-1的光谱,表明了席夫碱反应的形成。所制得的水凝胶具有良好的溶胀能力,溶胀率可达1000%以上。对小鼠进行了7天的体内分析,结果受伤的小鼠已经恢复,没有留下任何痕迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cytotoxic Carbazole Alkaloid from the Root of Clausena cxcavata on Hela Cell Line Synthesis of Quatenary Ammonium Compounds from Eugenol through Mannich and Methylation Reactions and Its Antibacterial Activity Furfural Synthesis from Mile-a-Minute Weed (Mikania micrantha) using Roselle Petal Extract as Catalyst The Effectiveness of Chitosan as an Antimicrobial on Bacterial Cellulose-based Scaffold Skin Tissue Engineering Mechanical Properties and Morphology Biocomposites of Polycaprolactone (PCL)/Modified using Trisodium Trimetaphosphate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1