Y. Zheng, J. Rakebrandt, H. Seifert, P. Smyrek, Wilhelm Pfleging
{"title":"Laser-induced breakdown spectroscopy for studying the electrochemical impact of porosity variations in composite electrode materials","authors":"Y. Zheng, J. Rakebrandt, H. Seifert, P. Smyrek, Wilhelm Pfleging","doi":"10.1109/3M-NANO.2017.8286301","DOIUrl":null,"url":null,"abstract":"The porosity in composite electrode materials can vary on micro-and nanometer scale and has a great impact on electrochemical performance in lithium-ion cells. Liquid electrolyte has to penetrate into the entire porous electrodes in order to enable lithium-ion diffusion. For studying the electrochemical impact of porosity variations in composite lithium-nickel-manganese-cobalt-oxide thick films (Li(Ni1/3Mn1/3Co1/3)O2, NMC), laser-induced breakdown spectroscopy (LIBS) was applied. A rapid chemical screening of the complete electrode after electrochemical cycling and cell degradation was performed. This rather new technological approach was used to obtain post-mortem critical information about surface and bulk phenomena that define and control the performance of lithium-ion batteries. The influence of porosity variations along NMC electrode surfaces was studied regarding capacity retention, life-time, and lithium distribution. For this purpose, different geometrical arrangements of porosity distribution were generated by embossing. Using LIBS, elemental mapping of lithium was obtained with a lateral resolution of 100 μm. A correlation between porosity distribution, cell degradation and local lithium plating could be identified.","PeriodicalId":6582,"journal":{"name":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"140 1","pages":"65-68"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2017.8286301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The porosity in composite electrode materials can vary on micro-and nanometer scale and has a great impact on electrochemical performance in lithium-ion cells. Liquid electrolyte has to penetrate into the entire porous electrodes in order to enable lithium-ion diffusion. For studying the electrochemical impact of porosity variations in composite lithium-nickel-manganese-cobalt-oxide thick films (Li(Ni1/3Mn1/3Co1/3)O2, NMC), laser-induced breakdown spectroscopy (LIBS) was applied. A rapid chemical screening of the complete electrode after electrochemical cycling and cell degradation was performed. This rather new technological approach was used to obtain post-mortem critical information about surface and bulk phenomena that define and control the performance of lithium-ion batteries. The influence of porosity variations along NMC electrode surfaces was studied regarding capacity retention, life-time, and lithium distribution. For this purpose, different geometrical arrangements of porosity distribution were generated by embossing. Using LIBS, elemental mapping of lithium was obtained with a lateral resolution of 100 μm. A correlation between porosity distribution, cell degradation and local lithium plating could be identified.