Removal of Hexavalent Chromium from Tannery Industry by Adsorption Using Chitosan.

Nibret Mekonen Ayele
{"title":"Removal of Hexavalent Chromium from Tannery Industry by Adsorption Using Chitosan.","authors":"Nibret Mekonen Ayele","doi":"10.52804/ijaas2022.3112","DOIUrl":null,"url":null,"abstract":": Chromium (Cr) is one of the most toxic heavy metals to living organisms, with different adverse health effects on humans, animals, plants, and microorganisms, and it must be reduced or removed from the body of water. The objective of this study was to remove hexavalent chromium from the tannery industry using chitosan. The batch adsorption experiments were conducted using a UV-Vis spectrophotometer. Equilibrium adsorption isotherms and the kinetic behavior of the process were also studied. The optimum conditions of the study were 120 min of contact time, 0.5 g adsorbent dose, and a solution pH of 3.0, which resulted in maximum Cr (VI) uptake. The maximum removal percentage of Cr (VI) was 86.00. The experimental data better fitted the Langmuir isotherm with a monolayer adsorption capacity of 20.82. The kinetic analysis revealed that the pseudo-second-order model fitted well to the acquired experimental data.","PeriodicalId":13883,"journal":{"name":"International Journal of Agricultural and Applied Sciences","volume":"701 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agricultural and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52804/ijaas2022.3112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: Chromium (Cr) is one of the most toxic heavy metals to living organisms, with different adverse health effects on humans, animals, plants, and microorganisms, and it must be reduced or removed from the body of water. The objective of this study was to remove hexavalent chromium from the tannery industry using chitosan. The batch adsorption experiments were conducted using a UV-Vis spectrophotometer. Equilibrium adsorption isotherms and the kinetic behavior of the process were also studied. The optimum conditions of the study were 120 min of contact time, 0.5 g adsorbent dose, and a solution pH of 3.0, which resulted in maximum Cr (VI) uptake. The maximum removal percentage of Cr (VI) was 86.00. The experimental data better fitted the Langmuir isotherm with a monolayer adsorption capacity of 20.82. The kinetic analysis revealed that the pseudo-second-order model fitted well to the acquired experimental data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
壳聚糖吸附去除制革工业中六价铬。
铬(Cr)是对生物体毒性最大的重金属之一,对人类、动物、植物和微生物的健康有不同的不利影响,必须从水体中减少或去除。本研究的目的是利用壳聚糖去除制革工业中的六价铬。采用紫外-可见分光光度计进行了间歇吸附实验。研究了平衡吸附等温线和反应动力学行为。研究的最佳条件为接触时间120 min,吸附剂剂量0.5 g,溶液pH为3.0,可获得最大的Cr (VI)吸收量。Cr (VI)的最大去除率为86.00%。实验数据较好地符合Langmuir等温线,单层吸附量为20.82。动力学分析表明,拟二阶模型与实验数据拟合良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digitaria species (Acha): panacea for malnutrition and food insecurity in Nigeria Morphological characterization and selection of early maturing Brassica napus accessions Quantitative Assessment of Macrophytes Diversity and their Status in Wetlands of Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh (India) Impact of delaying harvesting dates for sugar beet varieties under recent environmental changes Effect of zinc and boron foliar application on tomato growth and yield under protected structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1