Fabrication and Microhardness Analysis of MWCNT/MnO2 Nanocomposite

M. Z. Hussain, Sabah Khan, R. Nagarajan, Urfi Khan, V. Vats
{"title":"Fabrication and Microhardness Analysis of MWCNT/MnO2 Nanocomposite","authors":"M. Z. Hussain, Sabah Khan, R. Nagarajan, Urfi Khan, V. Vats","doi":"10.1155/2016/6070468","DOIUrl":null,"url":null,"abstract":"Recent research has shown that carbon nanotube (CNT) acts as a model reinforcement material for fabricating nanocomposites. The addition of CNT as a reinforcing material into the matrix improves the mechanical, thermal, tribological, and electrical properties. In this research paper multiwalled carbon nanotube (MWCNT), with different weight percentage (5%, 10%, and 15%), was reinforced into manganese dioxide (MnO2) matrix using solution method. The different weight % of MWCNT/MnO2 nanocomposite powders was compacted and then sintered. The phase analysis, morphology, and chemical composition of the nanocomposites were examined by X-ray diffractometer, Field Emission Scanning Electron Microscope (FESEM), and Energy Dispersive X-Ray (EDX), respectively. The XRD analysis indicates the formation of MWCNT/MnO2 nanocomposites. The FESEM surface morphology analysis shows that MnO2 nanotube is densely grown on the surface of MWCNT. Further, microhardness of MWCNT/MnO2 nanocomposite was measured and it was found that 10 wt% has higher microhardness in comparison to 5 and 15 wt%. The microhardness of the composites is influenced by mass density, nanotube weight fraction, arrangement of tubes, and dispersion of MWCNT in H2SO4(aq) solution.","PeriodicalId":17611,"journal":{"name":"Journal: Materials","volume":"239 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal: Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/6070468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Recent research has shown that carbon nanotube (CNT) acts as a model reinforcement material for fabricating nanocomposites. The addition of CNT as a reinforcing material into the matrix improves the mechanical, thermal, tribological, and electrical properties. In this research paper multiwalled carbon nanotube (MWCNT), with different weight percentage (5%, 10%, and 15%), was reinforced into manganese dioxide (MnO2) matrix using solution method. The different weight % of MWCNT/MnO2 nanocomposite powders was compacted and then sintered. The phase analysis, morphology, and chemical composition of the nanocomposites were examined by X-ray diffractometer, Field Emission Scanning Electron Microscope (FESEM), and Energy Dispersive X-Ray (EDX), respectively. The XRD analysis indicates the formation of MWCNT/MnO2 nanocomposites. The FESEM surface morphology analysis shows that MnO2 nanotube is densely grown on the surface of MWCNT. Further, microhardness of MWCNT/MnO2 nanocomposite was measured and it was found that 10 wt% has higher microhardness in comparison to 5 and 15 wt%. The microhardness of the composites is influenced by mass density, nanotube weight fraction, arrangement of tubes, and dispersion of MWCNT in H2SO4(aq) solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MWCNT/MnO2纳米复合材料的制备及显微硬度分析
近年来的研究表明,碳纳米管(CNT)是制备纳米复合材料的一种模型增强材料。在基体中加入碳纳米管作为增强材料,提高了机械、热、摩擦学和电学性能。本研究采用溶液法将不同重量百分比(5%、10%和15%)的多壁碳纳米管(MWCNT)增强到二氧化锰(MnO2)基体中。将不同重量%的MWCNT/MnO2纳米复合粉体压实后烧结。采用x射线衍射仪、场发射扫描电镜(FESEM)和能量色散x射线(EDX)对纳米复合材料的物相分析、形貌和化学成分进行了表征。XRD分析表明形成了MWCNT/MnO2纳米复合材料。FESEM表面形貌分析表明,MnO2纳米管密集生长在MWCNT表面。此外,测量了MWCNT/MnO2纳米复合材料的显微硬度,发现10 wt%的MWCNT/MnO2纳米复合材料的显微硬度高于5 wt%和15 wt%。复合材料的显微硬度受质量密度、纳米管质量分数、纳米管排列和纳米管在H2SO4(aq)溶液中的分散程度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modification of Aluminium 6063 Microstructure by Adding Boron and Titanium to Improve the Thermal Conductivity Well-Dispersed Nanoscale Zero-Valent Iron Supported in Macroporous Silica Foams: Synthesis, Characterization, and Performance in Cr(VI) Removal Investigation of Properties of Silk Fiber Produced in Ethiopia Utilizing Fullerenols as Surfactant for Carbon Nanotubes Dispersions Preparation Preparation, Characterization, and Cationic Functionalization of Cellulose-Based Aerogels for Wastewater Clarification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1