Crystallizing metal compound film on plastics by plasma-based ion implantation

N. Sakudo, N. Ikenaga, N. Sakumoto, K. Matsui, Y. Kishi, Z. Yajima
{"title":"Crystallizing metal compound film on plastics by plasma-based ion implantation","authors":"N. Sakudo, N. Ikenaga, N. Sakumoto, K. Matsui, Y. Kishi, Z. Yajima","doi":"10.1109/IIT.2014.6939982","DOIUrl":null,"url":null,"abstract":"It has been difficult to sputter-deposit crystalline compound directly on a substrate of low heat-resistant material like polymer. In this study a new apparatus is developed which deposits metallic compound film in crystalline structure directly on a substrate at lower temperature than 200°C (473K). The apparatus consists of a magnetron-sputtering deposition system with multi targets as well as of an ion irradiation system which has the same constitution as the plasma-based ion implantation, although the applied voltage is much lower. The crystallization on a low temperature substrate is assumed to arise from the simultaneous irradiation of ions extracted from plasma. In this report very low temperature crystallization of titanium nickel on polyimide substrate at 80°C (353K) was achieved by reducing the substrate heating due to the ion irradiation. The shape memory effect of the sheet was confirmed.","PeriodicalId":6548,"journal":{"name":"2014 20th International Conference on Ion Implantation Technology (IIT)","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 20th International Conference on Ion Implantation Technology (IIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIT.2014.6939982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It has been difficult to sputter-deposit crystalline compound directly on a substrate of low heat-resistant material like polymer. In this study a new apparatus is developed which deposits metallic compound film in crystalline structure directly on a substrate at lower temperature than 200°C (473K). The apparatus consists of a magnetron-sputtering deposition system with multi targets as well as of an ion irradiation system which has the same constitution as the plasma-based ion implantation, although the applied voltage is much lower. The crystallization on a low temperature substrate is assumed to arise from the simultaneous irradiation of ions extracted from plasma. In this report very low temperature crystallization of titanium nickel on polyimide substrate at 80°C (353K) was achieved by reducing the substrate heating due to the ion irradiation. The shape memory effect of the sheet was confirmed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等离子体离子注入在塑料上结晶金属复合薄膜
在聚合物等低耐热材料的衬底上直接溅射沉积结晶化合物一直是困难的。本研究开发了一种新的装置,在低于200°C (473K)的温度下,直接在衬底上沉积晶体结构的金属化合物薄膜。该装置由多靶磁控溅射沉积系统和离子辐照系统组成,离子辐照系统与等离子体离子注入系统具有相同的结构,但施加的电压要低得多。假定低温衬底上的结晶是由等离子体中提取的离子同时照射引起的。本文通过减少离子辐照对衬底的加热,在80℃(353K)下实现了钛镍在聚酰亚胺衬底上的极低温结晶。验证了板材的形状记忆效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Increase of sp3 content in a-C films with gas cluster ion beam bombardments; XPS and NEXAFS study NMOS source-drain extension ion implantation into heated substrates Activation of low-dose Si+ implant into In0.53Ga0.47As with Al+ and P+ co-implants The features of cold boron implantation in silicon Plasma Doping optimizing knock-on effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1