Controllable Synthesis of h-WO3 Nanoflakes by L-lysine Assisted Hydrothermal Route and Electrochemical Characterization of Nanoflakes Modified Glassy Carbon Electrode

Vijayakumar Gangaiah, Ashoka Siddaramanna, P. Adarakatti, G. Chandrappa
{"title":"Controllable Synthesis of h-WO3 Nanoflakes by L-lysine Assisted Hydrothermal Route and Electrochemical Characterization of Nanoflakes Modified Glassy Carbon Electrode","authors":"Vijayakumar Gangaiah, Ashoka Siddaramanna, P. Adarakatti, G. Chandrappa","doi":"10.18282/MPC.V1I1.567","DOIUrl":null,"url":null,"abstract":"Hexagonal tungsten trioxide (h-WO3) nanoflakes have been synthesized by a hydrothermal approach using L-lysine as the shape directing agent. The influence of hydrothermal reaction time and L-lysine content on the morphology of h-WO3 was investigated. The experimental results showed that the nanoflake morphology could be achieved at higher concentration of L-lysine. Based on the evolution of nanoflake morphology as a function of hydro-thermal duration, a “dissolution-crystallization-Ostwald ripening” growth mechanism has been proposed. The electro-chemical performance of h-WO3 nanoflakes has also been investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It is found that h-WO3 modified glassy carbon electrode (GCE) showed lower charge transfer resistance and enhancement in peak current attributed to the enrichment in electroactive surface area and faster electron transfer kinetics at h-WO3 modified GCE.","PeriodicalId":7338,"journal":{"name":"Advances in Materials Physics and Chemistry","volume":"207 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Physics and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18282/MPC.V1I1.567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Hexagonal tungsten trioxide (h-WO3) nanoflakes have been synthesized by a hydrothermal approach using L-lysine as the shape directing agent. The influence of hydrothermal reaction time and L-lysine content on the morphology of h-WO3 was investigated. The experimental results showed that the nanoflake morphology could be achieved at higher concentration of L-lysine. Based on the evolution of nanoflake morphology as a function of hydro-thermal duration, a “dissolution-crystallization-Ostwald ripening” growth mechanism has been proposed. The electro-chemical performance of h-WO3 nanoflakes has also been investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It is found that h-WO3 modified glassy carbon electrode (GCE) showed lower charge transfer resistance and enhancement in peak current attributed to the enrichment in electroactive surface area and faster electron transfer kinetics at h-WO3 modified GCE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
l -赖氨酸辅助水热法制备h-WO3纳米片及其修饰玻碳电极的电化学表征
以l -赖氨酸为定向剂,水热法制备了六方三氧化钨(h-WO3)纳米片。考察了水热反应时间和赖氨酸含量对h-WO3形貌的影响。实验结果表明,在较高浓度的赖氨酸条件下,可以形成纳米片状结构。基于纳米薄片形貌随水热时间的变化,提出了“溶解-结晶-奥斯特瓦尔德成熟”的生长机制。利用循环伏安法(CV)和电化学阻抗谱法(EIS)研究了h-WO3纳米片的电化学性能。结果表明,由于电活性表面积的增加,h-WO3修饰的玻碳电极(GCE)具有更低的电荷转移电阻和峰值电流的增强,并且具有更快的电子转移动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Indoor Radon Concentration in Some Schools in Kaya, Burkina Faso Adsorption studies of dye molecule on two-dimensional assembly of porphyrin using density functional theory Enhancing Strategy CIGS Solar Cell Performance Through a New ZnSe Buffer Layer Investigation of poly (2-methyl imidazole co 1,4-butanediol diglycidyl ether) as a leveler for blind hole copper plating The influence of surface imperfections on phosphate coating performance of nodular cast iron substrates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1