Effect of Annealing on Microstructure, Grain Growth and Hardness of Nanocrystalline Cu-Zr Alloy Prepared by Cryogenic Ball Milling

N. Khobragade, K. Sikdar, B. Kumar, D. Roy
{"title":"Effect of Annealing on Microstructure, Grain Growth and Hardness of Nanocrystalline Cu-Zr Alloy Prepared by Cryogenic Ball Milling","authors":"N. Khobragade, K. Sikdar, B. Kumar, D. Roy","doi":"10.5539/JMSR.V7N3P69","DOIUrl":null,"url":null,"abstract":"Nanocrystalline Cu-0.75 at.%Zr alloy was synthesized by high energy ball milling under cryogenic temperature. To investigate the influence of 0.75 at.%Zr addition on thermal stabilization of nanocrystalline state of Copper, milled powder was annealed up to T/Tm = 0.79 for 1h in an inert atmosphere. The microstructural changes of both milled and annealed powders were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Mechanical properties were determined in terms of hardness. It was found that addition of 0.75 at.%Zr can stabilize grain size at higher temperature, i.e., ~ 32 nm at 800oC (T/Tm = 0.79). The hardness of Cu-0.75 at.%Zr at 800oC was found to decrease by only ~ 13% as opposed to a 65% decrease in pure copper from cryomilled condition. The thermal stability of Cu-0.75 at.%Zr system at high temperatures was attributed to the kinetic stabilization, i.e., grain boundary pinning by intermetallic phases. Thermal stability contributions were assessed by thermodynamic models elicits added Zr is not sufficient for stabilization, rather kinetic stabilization (by intermetallic pinning of grain boundary) became active at higher annealing temperature.","PeriodicalId":16111,"journal":{"name":"Journal of Materials Science Research","volume":"99 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/JMSR.V7N3P69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Nanocrystalline Cu-0.75 at.%Zr alloy was synthesized by high energy ball milling under cryogenic temperature. To investigate the influence of 0.75 at.%Zr addition on thermal stabilization of nanocrystalline state of Copper, milled powder was annealed up to T/Tm = 0.79 for 1h in an inert atmosphere. The microstructural changes of both milled and annealed powders were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Mechanical properties were determined in terms of hardness. It was found that addition of 0.75 at.%Zr can stabilize grain size at higher temperature, i.e., ~ 32 nm at 800oC (T/Tm = 0.79). The hardness of Cu-0.75 at.%Zr at 800oC was found to decrease by only ~ 13% as opposed to a 65% decrease in pure copper from cryomilled condition. The thermal stability of Cu-0.75 at.%Zr system at high temperatures was attributed to the kinetic stabilization, i.e., grain boundary pinning by intermetallic phases. Thermal stability contributions were assessed by thermodynamic models elicits added Zr is not sufficient for stabilization, rather kinetic stabilization (by intermetallic pinning of grain boundary) became active at higher annealing temperature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
退火对低温球磨法制备Cu-Zr纳米晶合金组织、晶粒生长和硬度的影响
纳米晶Cu-0.75 at。采用低温高能球磨法制备了%Zr合金。探讨0.75 at的影响。加入%Zr对铜的纳米晶态进行热稳定处理,在惰性气氛中退火1h至T/Tm = 0.79。采用x射线衍射仪(XRD)和透射电镜(TEM)对磨后和退火后粉末的组织变化进行了表征。机械性能是根据硬度来确定的。结果发现,添加0.75 at。%Zr可以在800oC下稳定~ 32 nm的晶粒尺寸(T/Tm = 0.79)。Cu-0.75 at的硬度。在800℃时,%Zr只下降了13%,而纯铜在低温条件下下降了65%。Cu-0.75的热稳定性。高温下的%Zr体系是由动力学稳定引起的,即金属间相的晶界钉住。热力学模型评估了热稳定性的贡献,发现添加Zr不足以稳定,而是在较高的退火温度下,动态稳定(通过晶界的金属间钉住)变得活跃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural and Electronic Impact on Various Substrates of TiO2 Thin Film Using Sol-Gel Spin Coating Method On the Onset of Plasticity: Determination of Strength and Ductility Investigation to enhanced Physical and Mechanical Properties of Road Pavement in Asphalt Incorporating Low-Density Waste Plastic Bags Reviewer acknowledgements for Journal of Materials Science Research, Vol. 12, No. 2 Electron Theory of Metals - Answers to Unsolved Problems/Questions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1