Son Le Thanh, Binh Nguyen Thanh, Dang Do Van, Long Dang Van
{"title":"Investigation of photodegradation of 2,4-Dichlorophenoxyacetic acid on Cu2O/g-C3N4 catalysts","authors":"Son Le Thanh, Binh Nguyen Thanh, Dang Do Van, Long Dang Van","doi":"10.51316/jca.2022.056","DOIUrl":null,"url":null,"abstract":"The series x% (wt) Cu2O/g-C3N4 composites were prepared by the conventional impregnation method. These compounds were characterized by different methods such as X-ray Diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), UV–vis diffuse reflectance spectroscopy (UV-DRS), and Photoluminescence spectroscopy (PL). The results clearly showed the existence of Cu2O and g-C3N4 phases. The photocatalytic activity was estimated by the degradation of 2,4-Dichlorophenoxyacetic acid (2,4-D). The 5% Cu2O/g-C3N4 catalyst showed the highest activity, with the photodegradation yield reached 7,3%. The addition of H2O2 remarkably improved the yield, with 98,5% attained after 1 hour of irradiation. ","PeriodicalId":23507,"journal":{"name":"Vietnam Journal of Catalysis and Adsorption","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Catalysis and Adsorption","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51316/jca.2022.056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The series x% (wt) Cu2O/g-C3N4 composites were prepared by the conventional impregnation method. These compounds were characterized by different methods such as X-ray Diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), UV–vis diffuse reflectance spectroscopy (UV-DRS), and Photoluminescence spectroscopy (PL). The results clearly showed the existence of Cu2O and g-C3N4 phases. The photocatalytic activity was estimated by the degradation of 2,4-Dichlorophenoxyacetic acid (2,4-D). The 5% Cu2O/g-C3N4 catalyst showed the highest activity, with the photodegradation yield reached 7,3%. The addition of H2O2 remarkably improved the yield, with 98,5% attained after 1 hour of irradiation.