Spectrum-Aware Mobile Edge Computing for UAVs Using Reinforcement Learning

Babak Badnava, Taejoon Kim, Kenny Cheung, Zaheer Ali, M. Hashemi
{"title":"Spectrum-Aware Mobile Edge Computing for UAVs Using Reinforcement Learning","authors":"Babak Badnava, Taejoon Kim, Kenny Cheung, Zaheer Ali, M. Hashemi","doi":"10.1145/3453142.3491414","DOIUrl":null,"url":null,"abstract":"We consider the problem of task offloading by unmanned aerial vehicles (UAV) using mobile edge computing (MEC). In this context, each UAV makes a decision to offload the computation task to a more powerful MEC server (e.g., base station), or to perform the task locally. In this paper, we propose a spectrum-aware decision-making framework such that each agent can dynamically select one of the available channels for offloading. To this end, we develop a deep reinforcement learning (DRL) framework for the UAVs to select the channel for task offloading or perform the computation locally. In the numerical results based on deep Q-network, we con-sider a combination of energy consumption and task completion time as the reward. Simulation results based on low-band, mid-band, and high-band channels demonstrate that the DQN agents efficiently learn the environment and dynamically adjust their actions to maximize the long-term reward.","PeriodicalId":6779,"journal":{"name":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"66 1","pages":"376-380"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453142.3491414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We consider the problem of task offloading by unmanned aerial vehicles (UAV) using mobile edge computing (MEC). In this context, each UAV makes a decision to offload the computation task to a more powerful MEC server (e.g., base station), or to perform the task locally. In this paper, we propose a spectrum-aware decision-making framework such that each agent can dynamically select one of the available channels for offloading. To this end, we develop a deep reinforcement learning (DRL) framework for the UAVs to select the channel for task offloading or perform the computation locally. In the numerical results based on deep Q-network, we con-sider a combination of energy consumption and task completion time as the reward. Simulation results based on low-band, mid-band, and high-band channels demonstrate that the DQN agents efficiently learn the environment and dynamically adjust their actions to maximize the long-term reward.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于强化学习的无人机频谱感知移动边缘计算
我们考虑了使用移动边缘计算(MEC)的无人驾驶飞行器(UAV)任务卸载问题。在这种情况下,每架无人机决定将计算任务卸载到更强大的MEC服务器(例如,基站),或者在本地执行任务。在本文中,我们提出了一个频谱感知决策框架,使每个智能体可以动态地选择一个可用的信道进行卸载。为此,我们开发了一个深度强化学习(DRL)框架,用于无人机选择任务卸载通道或在本地执行计算。在基于深度q网络的数值结果中,我们考虑了能量消耗和任务完成时间的组合作为奖励。基于低频段、中频段和高频段信道的仿真结果表明,DQN智能体可以有效地学习环境并动态调整其行为以最大化长期奖励。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data-Driven Optimal Control Decision-Making System for Multiple Autonomous Vehicles The Performance Argument for Blockchain-based Edge DNS Caching LotteryFL: Empower Edge Intelligence with Personalized and Communication-Efficient Federated Learning Collaborative Cloud-Edge-Local Computation Offloading for Multi-Component Applications Poster: Enabling Flexible Edge-assisted XR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1