Fast Pupil center localization system based on SSD Cascade gradient

Zilin Xun, Yuandong Gu, A. Guo, Fei Wang
{"title":"Fast Pupil center localization system based on SSD Cascade gradient","authors":"Zilin Xun, Yuandong Gu, A. Guo, Fei Wang","doi":"10.1109/SSLChinaIFWS54608.2021.9675166","DOIUrl":null,"url":null,"abstract":"In order to solve the problem of low recognition and high misrecognition of traditional eye tracking system, which uses cascade classifier to obtain face image. This paper proposes a model of SSD(Single Shot MultiBox Detector) combined gradient algorithm. The method, firstly, put the SSD in depth study of facial model to replace the cascade classifier, with a face image segmentation the eye part of the detected image. Secondly using the improved gradient localization algorithm to locate the pupil center position, and then through the proposed simple judgment mechanism on the rationality of the pupil center again decrease the misrecognition, finally get the pupil center. Experimental results show that the proposed algorithm can achieve a detection rate of 5.42 frames per second and improve the detection accuracy by 6%.","PeriodicalId":6816,"journal":{"name":"2021 18th China International Forum on Solid State Lighting & 2021 7th International Forum on Wide Bandgap Semiconductors (SSLChina: IFWS)","volume":"467 1","pages":"118-121"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th China International Forum on Solid State Lighting & 2021 7th International Forum on Wide Bandgap Semiconductors (SSLChina: IFWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSLChinaIFWS54608.2021.9675166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to solve the problem of low recognition and high misrecognition of traditional eye tracking system, which uses cascade classifier to obtain face image. This paper proposes a model of SSD(Single Shot MultiBox Detector) combined gradient algorithm. The method, firstly, put the SSD in depth study of facial model to replace the cascade classifier, with a face image segmentation the eye part of the detected image. Secondly using the improved gradient localization algorithm to locate the pupil center position, and then through the proposed simple judgment mechanism on the rationality of the pupil center again decrease the misrecognition, finally get the pupil center. Experimental results show that the proposed algorithm can achieve a detection rate of 5.42 frames per second and improve the detection accuracy by 6%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SSD级联梯度的快速瞳孔中心定位系统
为了解决传统眼动追踪系统识别率低、误认率高的问题,采用级联分类器获取人脸图像。提出了一种单镜头多盒检测器(Single Shot MultiBox Detector, SSD)组合梯度算法模型。该方法首先用SSD深度研究人脸模型来代替级联分类器,用人脸图像分割检测图像的眼睛部分。其次利用改进的梯度定位算法对瞳孔中心位置进行定位,然后通过提出的对瞳孔中心合理性的简单判断机制再次减少误识别,最终得到瞳孔中心。实验结果表明,该算法可实现5.42帧/秒的检测速率,检测精度提高6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Si Implantation in GaN at Elevated Temperatures Spectral Design Considerations of White LED for Classroom Application Improved Ohmic Contact Performance on Undoped AlGaN/GaN HEMTs Using by Ternary Alloy Predeposition Ocular physiological responses to dynamic and constant screen brightness Study on Thermal Transient Measurement Method and Mechanism of GaN HEMT Power Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1