A holistic approach for semantic-based game generation

Owen Sacco, Antonios Liapis, Georgios N. Yannakakis
{"title":"A holistic approach for semantic-based game generation","authors":"Owen Sacco, Antonios Liapis, Georgios N. Yannakakis","doi":"10.1109/CIG.2016.7860386","DOIUrl":null,"url":null,"abstract":"The Web contains vast sources of content that could be reused to reduce the development time and effort to create games. However, most Web content is unstructured and lacks meaning for machines to be able to process and infer new knowledge. The Web of Data is a term used to describe a trend for publishing and interlinking previously disconnected datasets on the Web in order to make them more valuable and useful as a whole. In this paper, we describe an innovative approach that exploits Semantic Web technologies to automatically generate games by reusing Web content. Existing work on automatic game content generation through algorithmic means focuses primarily on a set of parameters within constrained game design spaces such as terrains or game levels, but does not harness the potential of already existing content on the Web for game generation. We instead propose a holistic and more generally-applicable game generation solution that would identify suitable Web information sources and enrich game content with semantic meta-structures.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"28 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2016.7860386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The Web contains vast sources of content that could be reused to reduce the development time and effort to create games. However, most Web content is unstructured and lacks meaning for machines to be able to process and infer new knowledge. The Web of Data is a term used to describe a trend for publishing and interlinking previously disconnected datasets on the Web in order to make them more valuable and useful as a whole. In this paper, we describe an innovative approach that exploits Semantic Web technologies to automatically generate games by reusing Web content. Existing work on automatic game content generation through algorithmic means focuses primarily on a set of parameters within constrained game design spaces such as terrains or game levels, but does not harness the potential of already existing content on the Web for game generation. We instead propose a holistic and more generally-applicable game generation solution that would identify suitable Web information sources and enrich game content with semantic meta-structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语义的游戏生成的整体方法
Web包含大量的内容资源,这些内容可以重复使用,从而减少游戏开发的时间和精力。然而,大多数Web内容是非结构化的,缺乏机器处理和推断新知识的意义。Web of Data是一个术语,用于描述一种趋势,即在Web上发布和连接先前断开的数据集,以使它们作为一个整体更有价值和有用。在本文中,我们描述了一种利用语义Web技术通过重用Web内容来自动生成游戏的创新方法。现有的通过算法自动生成游戏内容的工作主要集中在受限的游戏设计空间(如地形或游戏关卡)内的一系列参数,但并没有利用网络上已有内容的潜力来生成游戏。相反,我们提出了一个整体的、更普遍适用的游戏生成解决方案,它将识别合适的Web信息源,并用语义元结构丰富游戏内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human gesture classification by brute-force machine learning for exergaming in physiotherapy Evolving micro for 3D Real-Time Strategy games Constrained surprise search for content generation Design influence on player retention: A method based on time varying survival analysis Deep Q-learning using redundant outputs in visual doom
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1