{"title":"Sensory and Cognitive Ecology of Bats","authors":"R. Page, Hannah M. ter Hofstede","doi":"10.1146/annurev-ecolsys-012921-052635","DOIUrl":null,"url":null,"abstract":"We see stunning morphological diversity across the animal world. Less conspicuous but equally fascinating are the sensory and cognitive adaptations that determine animals’ interactions with their environments and each other. We discuss the development of the fields of sensory and cognitive ecology and the importance of integrating these fields to understand the evolution of adaptive behaviors. Bats, with their extraordinarily high ecological diversity, are ideal animals for this purpose. An explosion in recent research allows for better understanding of the molecular, genetic, neural, and behavioral bases for sensory ecology and cognition in bats. We give examples of studies that illuminate connections between sensory and cognitive features of information filtering, evolutionary trade-offs in sensory and cognitive processing, and multimodal sensing and integration. By investigating the selective pressures underlying information acquisition, processing, and use in bats, we aim to illuminate patterns and processes driving sensory and cognitive evolution. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"91 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Ecology, Evolution, and Systematics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-ecolsys-012921-052635","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 7
Abstract
We see stunning morphological diversity across the animal world. Less conspicuous but equally fascinating are the sensory and cognitive adaptations that determine animals’ interactions with their environments and each other. We discuss the development of the fields of sensory and cognitive ecology and the importance of integrating these fields to understand the evolution of adaptive behaviors. Bats, with their extraordinarily high ecological diversity, are ideal animals for this purpose. An explosion in recent research allows for better understanding of the molecular, genetic, neural, and behavioral bases for sensory ecology and cognition in bats. We give examples of studies that illuminate connections between sensory and cognitive features of information filtering, evolutionary trade-offs in sensory and cognitive processing, and multimodal sensing and integration. By investigating the selective pressures underlying information acquisition, processing, and use in bats, we aim to illuminate patterns and processes driving sensory and cognitive evolution. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Ecology, Evolution, and Systematics is a scholarly publication that has been in circulation since 1970. It focuses on important advancements in the areas of ecology, evolutionary biology, and systematics, with relevance to all forms of life on Earth. The journal features essay reviews that encompass various topics such as phylogeny, speciation, molecular evolution, behavior, evolutionary physiology, population dynamics, ecosystem processes, and applications in invasion biology, conservation, and environmental management. Recently, the current volume of the journal transitioned from a subscription-based model to open access through the Annual Reviews' Subscribe to Open program. Consequently, all articles published in the current volume are now available under a CC BY license.