{"title":"VLSI cryogenic front-end for HPGe detectors based on a silicon-germanium technology","authors":"A. Pullia, F. Zocca, M. Citterio","doi":"10.1109/NSSMIC.2010.5873987","DOIUrl":null,"url":null,"abstract":"We studied the feasibility of monolithic silicon-germanium front-ends for cryogenic semiconductor detectors. In this framework we designed and simulated a low-noise Charge Sensitive Preamplifier for High Purity Germanium detectors using the Austria Micro System S35 silicon-germanium technology. The preamplifier uses two silicon-germanium Hetero-junction Bipolar Transistors, a few silicon Metal-Oxide-Silicon Field-Effect Transistors, and an external silicon Junction Field-Effect Transistor. It is designed for gamma-ray spectroscopy performance at liquid-argon temperature, and exploits the full functionality at cryogenic temperatures of silicon-germanium Bipolar Transistors. Single-channel and four-channel versions are being realized.","PeriodicalId":13048,"journal":{"name":"IEEE Nuclear Science Symposuim & Medical Imaging Conference","volume":"45 1","pages":"1340-1342"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposuim & Medical Imaging Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2010.5873987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We studied the feasibility of monolithic silicon-germanium front-ends for cryogenic semiconductor detectors. In this framework we designed and simulated a low-noise Charge Sensitive Preamplifier for High Purity Germanium detectors using the Austria Micro System S35 silicon-germanium technology. The preamplifier uses two silicon-germanium Hetero-junction Bipolar Transistors, a few silicon Metal-Oxide-Silicon Field-Effect Transistors, and an external silicon Junction Field-Effect Transistor. It is designed for gamma-ray spectroscopy performance at liquid-argon temperature, and exploits the full functionality at cryogenic temperatures of silicon-germanium Bipolar Transistors. Single-channel and four-channel versions are being realized.