Investigating the Physical Properties of Sintered Alumina in the Presence of MgO Nanopowder

M. Dadkhah, A. Saboori, M. Jafari
{"title":"Investigating the Physical Properties of Sintered Alumina in the Presence of MgO Nanopowder","authors":"M. Dadkhah, A. Saboori, M. Jafari","doi":"10.1155/2014/496146","DOIUrl":null,"url":null,"abstract":"Magnesium oxide nanopowder is synthesized using magnesium nitrate hexahydrate and oxalic acid as precursors via the sol-gel method. In order to investigate the effect of magnesia nanopowders on the physical properties of sintered alumina, 0.1, 0.3, and 0.5 wt% of MgO are added to alumina. The prepared specimens were sintered at 1570°C for 4 hours under an inert atmosphere. The morphology and size of nanopowders were characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). Structural analysis was investigated by means of Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Outcomes show that by increasing the percentage of MgO, spinel phase (MgAl2O4) has been formed in the structure of alumina. During the sintering process, spinel phase diffused through the grain boundaries and pinned the grain boundaries which led to decrease in grain sizes. So, by decreasing the grain size, the physical properties of sintered alumina have improved.","PeriodicalId":17611,"journal":{"name":"Journal: Materials","volume":"43 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal: Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/496146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Magnesium oxide nanopowder is synthesized using magnesium nitrate hexahydrate and oxalic acid as precursors via the sol-gel method. In order to investigate the effect of magnesia nanopowders on the physical properties of sintered alumina, 0.1, 0.3, and 0.5 wt% of MgO are added to alumina. The prepared specimens were sintered at 1570°C for 4 hours under an inert atmosphere. The morphology and size of nanopowders were characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). Structural analysis was investigated by means of Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Outcomes show that by increasing the percentage of MgO, spinel phase (MgAl2O4) has been formed in the structure of alumina. During the sintering process, spinel phase diffused through the grain boundaries and pinned the grain boundaries which led to decrease in grain sizes. So, by decreasing the grain size, the physical properties of sintered alumina have improved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米氧化镁粉末存在下烧结氧化铝的物理性质研究
以六水硝酸镁和草酸为前驱体,采用溶胶-凝胶法制备了氧化镁纳米粉体。为了研究氧化镁纳米粉对烧结氧化铝物理性能的影响,在氧化铝中分别添加0.1、0.3和0.5 wt%的氧化镁。将制备好的试样在1570℃惰性气氛下烧结4小时。采用透射电子显微镜(TEM)和扫描电子显微镜(SEM)对纳米粉体的形貌和粒径进行了表征。采用傅里叶变换红外光谱(FT-IR)和x射线衍射(XRD)对其进行了结构分析。结果表明:随着MgO含量的增加,氧化铝结构中形成尖晶石相(MgAl2O4);在烧结过程中,尖晶石相通过晶界扩散,钉住晶界,导致晶粒尺寸减小。因此,通过减小晶粒尺寸,烧结氧化铝的物理性能得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modification of Aluminium 6063 Microstructure by Adding Boron and Titanium to Improve the Thermal Conductivity Well-Dispersed Nanoscale Zero-Valent Iron Supported in Macroporous Silica Foams: Synthesis, Characterization, and Performance in Cr(VI) Removal Investigation of Properties of Silk Fiber Produced in Ethiopia Utilizing Fullerenols as Surfactant for Carbon Nanotubes Dispersions Preparation Preparation, Characterization, and Cationic Functionalization of Cellulose-Based Aerogels for Wastewater Clarification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1