{"title":"Offline learning of prototypical negatives for efficient online Exemplar SVM","authors":"Masato Takami, Peter Bell, B. Ommer","doi":"10.1109/WACV.2014.6836075","DOIUrl":null,"url":null,"abstract":"Online searches in big image databases require sufficient results in feasible time. Digitization campaigns have simplified the access to a huge number of images in the field of art history, which can be analyzed by detecting duplicates and similar objects in the dataset. A high recall is essential for the evaluation and therefore the search method has to be robust against minor changes due to smearing or aging effects of the documents. At the same time the computational time has to be short to allow a practical use of the online search. By using an Exemplar SVM based classifier [12] a high recall can be achieved, but the mining of negatives and the multiple rounds of retraining for every search makes the method too time-consuming. An even bigger problem is that by allowing arbitrary query regions, it is not possible to provide a training set, which would be necessary to create a classifier. To solve this, we created a pool of general negatives offline in advance, which can be used by any arbitrary input in the online search step and requires only one short training round without the time-consuming mining. In a second step, this classifier is improved by using positive detections in an additional training round. This results in a classifier for the online search in unlabeled datasets, which provides high recall in short calculation time respectively.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"81 1","pages":"377-384"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6836075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Online searches in big image databases require sufficient results in feasible time. Digitization campaigns have simplified the access to a huge number of images in the field of art history, which can be analyzed by detecting duplicates and similar objects in the dataset. A high recall is essential for the evaluation and therefore the search method has to be robust against minor changes due to smearing or aging effects of the documents. At the same time the computational time has to be short to allow a practical use of the online search. By using an Exemplar SVM based classifier [12] a high recall can be achieved, but the mining of negatives and the multiple rounds of retraining for every search makes the method too time-consuming. An even bigger problem is that by allowing arbitrary query regions, it is not possible to provide a training set, which would be necessary to create a classifier. To solve this, we created a pool of general negatives offline in advance, which can be used by any arbitrary input in the online search step and requires only one short training round without the time-consuming mining. In a second step, this classifier is improved by using positive detections in an additional training round. This results in a classifier for the online search in unlabeled datasets, which provides high recall in short calculation time respectively.