{"title":"Freeform high-speed large-amplitude deformable piezo mirrors","authors":"M. Wapler, J. Brunne, U. Wallrabe","doi":"10.1109/OMN.2013.6659107","DOIUrl":null,"url":null,"abstract":"We present a new type of tunable mirror with sharply-featured freeform displacement profiles, large displacements of several 100μm and high operating frequencies close to the kHz range at 15mm diameter. The actuation principle is based on a recently explored “topological” displacement mode of piezo sheets. The prototypes presented here include a rotationally symmetric axicon, a hyperbolic sech-icon and a non-symmetric pyram-icon and are scalable to smaller dimensions. The fabrication process is economic and cleanroom-free, and the optical quality is sufficient to demonstrate the diffraction patterns of the optical elements.","PeriodicalId":6334,"journal":{"name":"2013 International Conference on Optical MEMS and Nanophotonics (OMN)","volume":"78 1","pages":"157-158"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Optical MEMS and Nanophotonics (OMN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMN.2013.6659107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We present a new type of tunable mirror with sharply-featured freeform displacement profiles, large displacements of several 100μm and high operating frequencies close to the kHz range at 15mm diameter. The actuation principle is based on a recently explored “topological” displacement mode of piezo sheets. The prototypes presented here include a rotationally symmetric axicon, a hyperbolic sech-icon and a non-symmetric pyram-icon and are scalable to smaller dimensions. The fabrication process is economic and cleanroom-free, and the optical quality is sufficient to demonstrate the diffraction patterns of the optical elements.