Late Acceptance Selection Hyper-heuristic for Wind Farm Layout Optimisation Problem

Hiba Abdulaziz, A. Elnahas, Alaa Daffalla, Yossra Noureldien, A. Kheiri, E. Özcan
{"title":"Late Acceptance Selection Hyper-heuristic for Wind Farm Layout Optimisation Problem","authors":"Hiba Abdulaziz, A. Elnahas, Alaa Daffalla, Yossra Noureldien, A. Kheiri, E. Özcan","doi":"10.1109/ICCCEEE.2018.8515808","DOIUrl":null,"url":null,"abstract":"Wind is a promising source of renewable energy which can be harvested using wind turbines placed on farms. An efficient wind farm layout achieving various engineering and financial objectives is crucial to ensure the sustainability and continuity of energy production. In this study, a high-level search technique, namely late acceptance selection hyper-heuristic is applied to optimise the layout of wind farms. This approach aims to find the best placement of turbines at a given site, maximising the energy output while minimising the cost at the same time. The computational experiments indicate that the late acceptance selection hyper-heuristic improves upon the performance of a previously proposed genetic algorithm across all scenarios and an iterated local search over the majority of scenarios considering the best solutions obtained by each algorithm over the runs.","PeriodicalId":6567,"journal":{"name":"2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE)","volume":"235 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCEEE.2018.8515808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Wind is a promising source of renewable energy which can be harvested using wind turbines placed on farms. An efficient wind farm layout achieving various engineering and financial objectives is crucial to ensure the sustainability and continuity of energy production. In this study, a high-level search technique, namely late acceptance selection hyper-heuristic is applied to optimise the layout of wind farms. This approach aims to find the best placement of turbines at a given site, maximising the energy output while minimising the cost at the same time. The computational experiments indicate that the late acceptance selection hyper-heuristic improves upon the performance of a previously proposed genetic algorithm across all scenarios and an iterated local search over the majority of scenarios considering the best solutions obtained by each algorithm over the runs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风电场布局优化问题的后期验收选择超启发式算法
风能是一种很有前途的可再生能源,可以通过放置在农场上的风力涡轮机来获得。实现各种工程和财务目标的高效风电场布局对于确保能源生产的可持续性和连续性至关重要。在本研究中,采用一种高层次的搜索技术,即后期接受选择超启发式来优化风电场布局。这种方法的目的是在给定的地点找到涡轮机的最佳位置,最大限度地提高能量输出,同时最小化成本。计算实验表明,延迟接受选择超启发式算法改进了先前提出的遗传算法在所有场景中的性能,并在大多数场景中迭代局部搜索,考虑每个算法在运行过程中获得的最佳解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Evaluation of AODV, OLSR and GRP Routing Protocols in Vehicular Highway Environment Performance Evaluation and Failure Analysis of Modular Power Amplifier with Gysel and Branch Coupler Network Efftciency Analysis ofLighting Bulbs Using Fuzzy Data Envelopment Analysis Vehicles Distribution and Lines Planning in Public Transportation A case Study: Wad Medani, Gezira State, Sudan Mobile based Tele-medicine Diabetic Retinopathy Screening
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1