A model for variation- and fault-tolerant digital logic using self-assembled nanowire architectures

A. Goudarzi, Matthew R. Lakin, D. Stefanovic, C. Teuscher
{"title":"A model for variation- and fault-tolerant digital logic using self-assembled nanowire architectures","authors":"A. Goudarzi, Matthew R. Lakin, D. Stefanovic, C. Teuscher","doi":"10.1145/2770287.2770315","DOIUrl":null,"url":null,"abstract":"Reconfiguration has been used for both defect- and fault-tolerant nanoscale architectures with regular structure. Recent advances in self-assembled nanowires have opened doors to a new class of electronic devices with irregular structure. For such devices, reservoir computing has been shown to be a viable approach to implement computation. This approach exploits the dynamical properties of a system rather than specifics of its structure. Here, we extend a model of reservoir computing, called the echo state network, to reflect more realistic aspects of self-assembled nanowire networks. As a proof of concept, we use echo state networks to implement basic building blocks of digital computing: AND, OR, and XOR gates, and 2-bit adder and multiplier circuits. We show that the system can operate perfectly in the presence of variations five orders of magnitude higher than ITRS's 2005 target, 6%, and achieves success rates 6 times higher than related approaches at half the cost. We also describe an adaptive algorithm that can detect faults in the system and reconfigure it to resume perfect operational condition.","PeriodicalId":6519,"journal":{"name":"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"136 1","pages":"116-121"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2770287.2770315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Reconfiguration has been used for both defect- and fault-tolerant nanoscale architectures with regular structure. Recent advances in self-assembled nanowires have opened doors to a new class of electronic devices with irregular structure. For such devices, reservoir computing has been shown to be a viable approach to implement computation. This approach exploits the dynamical properties of a system rather than specifics of its structure. Here, we extend a model of reservoir computing, called the echo state network, to reflect more realistic aspects of self-assembled nanowire networks. As a proof of concept, we use echo state networks to implement basic building blocks of digital computing: AND, OR, and XOR gates, and 2-bit adder and multiplier circuits. We show that the system can operate perfectly in the presence of variations five orders of magnitude higher than ITRS's 2005 target, 6%, and achieves success rates 6 times higher than related approaches at half the cost. We also describe an adaptive algorithm that can detect faults in the system and reconfigure it to resume perfect operational condition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用自组装纳米线架构的变化和容错数字逻辑模型
重构已被用于具有规则结构的缺陷和容错纳米级体系结构。自组装纳米线的最新进展为具有不规则结构的新型电子器件打开了大门。对于此类设备,油藏计算已被证明是实现计算的可行方法。这种方法利用的是系统的动力学特性,而不是其结构的特殊性。在这里,我们扩展了一个油藏计算模型,称为回声状态网络,以反映自组装纳米线网络的更现实的方面。作为概念验证,我们使用回波状态网络来实现数字计算的基本构建模块:与、或和异或门,以及2位加法器和乘法器电路。我们表明,该系统可以在比ITRS 2005年目标(6%)高出5个数量级的变化中完美运行,并且以一半的成本实现了比相关方法高6倍的成功率。我们还描述了一种自适应算法,该算法可以检测系统中的故障并重新配置系统以恢复完美的运行状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MECRO: A local processing computer architecture based on memristor crossbar Mosaic: A scheme of mapping non-volatile Boolean logic on memristor crossbar Wave-based multi-valued computation framework A new Tunnel-FET based RAM concept for ultra-low power applications A CMOS-memristive self-learning neural network for pattern classification applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1