Discrete gradients for computational Bayesian inference

IF 1 Q3 Engineering Journal of Computational Dynamics Pub Date : 2019-03-01 DOI:10.3934/jcd.2019019
S. Pathiraja, S. Reich
{"title":"Discrete gradients for computational Bayesian inference","authors":"S. Pathiraja, S. Reich","doi":"10.3934/jcd.2019019","DOIUrl":null,"url":null,"abstract":"In this paper, we exploit the gradient flow structure of continuous-time formulations of Bayesian inference in terms of their numerical time-stepping. We focus on two particular examples, namely, the continuous-time ensemble Kalman-Bucy filter and a particle discretisation of the Fokker-Planck equation associated to Brownian dynamics. Both formulations can lead to stiff differential equations which require special numerical methods for their efficient numerical implementation. We compare discrete gradient methods to alternative semi-implicit and other iterative implementations of the underlying Bayesian inference problems.","PeriodicalId":37526,"journal":{"name":"Journal of Computational Dynamics","volume":"78 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2019019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 18

Abstract

In this paper, we exploit the gradient flow structure of continuous-time formulations of Bayesian inference in terms of their numerical time-stepping. We focus on two particular examples, namely, the continuous-time ensemble Kalman-Bucy filter and a particle discretisation of the Fokker-Planck equation associated to Brownian dynamics. Both formulations can lead to stiff differential equations which require special numerical methods for their efficient numerical implementation. We compare discrete gradient methods to alternative semi-implicit and other iterative implementations of the underlying Bayesian inference problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算贝叶斯推理的离散梯度
本文从贝叶斯推理的数值时间步进出发,研究了连续时间公式的梯度流结构。我们关注两个特定的例子,即连续时间系综卡尔曼-布西滤波器和与布朗动力学相关的福克-普朗克方程的粒子离散化。这两种形式都可能导致刚性微分方程,需要特殊的数值方法才能有效地进行数值实现。我们将离散梯度方法与潜在贝叶斯推理问题的替代半隐式和其他迭代实现进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Dynamics
Journal of Computational Dynamics Engineering-Computational Mechanics
CiteScore
2.30
自引率
10.00%
发文量
31
期刊介绍: JCD is focused on the intersection of computation with deterministic and stochastic dynamics. The mission of the journal is to publish papers that explore new computational methods for analyzing dynamic problems or use novel dynamical methods to improve computation. The subject matter of JCD includes both fundamental mathematical contributions and applications to problems from science and engineering. A non-exhaustive list of topics includes * Computation of phase-space structures and bifurcations * Multi-time-scale methods * Structure-preserving integration * Nonlinear and stochastic model reduction * Set-valued numerical techniques * Network and distributed dynamics JCD includes both original research and survey papers that give a detailed and illuminating treatment of an important area of current interest. The editorial board of JCD consists of world-leading researchers from mathematics, engineering, and science, all of whom are experts in both computational methods and the theory of dynamical systems.
期刊最新文献
Approximated exponential integrators for the stochastic Manakov equation Dynamical optimal transport of nonlinear control-affine systems Subgradient algorithm for computing contraction metrics for equilibria Convergence of the vertical gradient flow for the Gaussian Monge problem Friction-adaptive descent: A family of dynamics-based optimization methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1