Stabilization of cold-field-emission current from a CeB6 single-crystal emitter by using a faceted (100) plane

T. Kusunoki, T. Hashizume, K. Kasuya, N. Arai
{"title":"Stabilization of cold-field-emission current from a CeB6 single-crystal emitter by using a faceted (100) plane","authors":"T. Kusunoki, T. Hashizume, K. Kasuya, N. Arai","doi":"10.1116/6.0000739","DOIUrl":null,"url":null,"abstract":"A cerium hexaboride (CeB6) single crystal grown by the floating-zone method has a low work function of about 2.6 eV, and along with lanthanum hexaboride (LaB6), it is one of the most popular cathode materials. It has been widely used as the thermionic emitter of electron microscopes, such as SEMs and TEMs. However, cold-field emitters (CFEs) based on CeB6 and LaB6 have not been put to practical use due to their insufficient emission stability compared to that of conventional tungsten (W)-CFEs. In consideration of that background, in the present study, the stability of the emission current from a CeB6 single-crystal CFE was improved by using the (100) plane at the faceted tip of the single crystal. The CeB6⟨100⟩ single crystal was processed by electrochemical etching and successive high-temperature field evaporation and faceting under an appropriate electric field to make a (100) plane at the apex of the crystal. The improved CeB6(100)-CFE emitted a monochromatic electron beam, which has about three-quarters of the energy width of that of W(310)-CFEs. Emission current from the (100) plane maintained low emission noise, and emission decay in the electron-gun chamber of the SEM was suppressed. The resulting current noise is low enough to produce SEM images without image deterioration, and the relatively small decay makes it possible to use the CeB6(100) emitter for one flashing process per day.","PeriodicalId":17652,"journal":{"name":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0000739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

A cerium hexaboride (CeB6) single crystal grown by the floating-zone method has a low work function of about 2.6 eV, and along with lanthanum hexaboride (LaB6), it is one of the most popular cathode materials. It has been widely used as the thermionic emitter of electron microscopes, such as SEMs and TEMs. However, cold-field emitters (CFEs) based on CeB6 and LaB6 have not been put to practical use due to their insufficient emission stability compared to that of conventional tungsten (W)-CFEs. In consideration of that background, in the present study, the stability of the emission current from a CeB6 single-crystal CFE was improved by using the (100) plane at the faceted tip of the single crystal. The CeB6⟨100⟩ single crystal was processed by electrochemical etching and successive high-temperature field evaporation and faceting under an appropriate electric field to make a (100) plane at the apex of the crystal. The improved CeB6(100)-CFE emitted a monochromatic electron beam, which has about three-quarters of the energy width of that of W(310)-CFEs. Emission current from the (100) plane maintained low emission noise, and emission decay in the electron-gun chamber of the SEM was suppressed. The resulting current noise is low enough to produce SEM images without image deterioration, and the relatively small decay makes it possible to use the CeB6(100) emitter for one flashing process per day.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用面(100)面稳定CeB6单晶发射极冷场发射电流
浮区法生长的六硼化铈(CeB6)单晶具有约2.6 eV的低功函数,与六硼化镧(LaB6)一起成为最受欢迎的正极材料之一。它已被广泛用作电子显微镜的热离子发射器,如sem和tem。然而,基于CeB6和LaB6的冷场发射器(CFEs)由于其发射稳定性不如传统的钨(W)-CFEs而尚未投入实际应用。考虑到这一背景,本研究通过在CeB6单晶的多面尖端使用(100)平面,提高了CeB6单晶CFE发射电流的稳定性。CeB6⟨100⟩单晶在适当的电场下,通过电化学蚀刻和连续的高温场蒸发和刨面来处理,使其在晶体的顶端形成一个(100)平面。改进后的CeB6(100)-CFE发射单色电子束,其能量宽度约为W(310)-CFE的四分之三。(100)平面的发射电流保持了较低的发射噪声,并且抑制了SEM电子枪腔内的发射衰减。由此产生的电流噪声低到足以产生没有图像恶化的SEM图像,并且相对较小的衰减使得每天使用CeB6(100)发射器进行一次闪烁过程成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tunable and scalable fabrication of plasmonic dimer arrays with sub-10 nm nanogaps by area-selective atomic layer deposition Characterization and optimization of bonding and interconnect technology for 3D stacking thin dies Ultradeep microaxicons in lithium niobate by focused Xe ion beam milling Self-powered ultraviolet photodiode based on lateral polarity structure GaN films Electrical conductivity across the alumina support layer following carbon nanotube growth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1