Pranav S. Athalye, Nada J. Šekeljić, Milan M. Ilić, Alexey A. Tonyushkin, Branislav M. Notaroš
{"title":"Subject-loaded quadrifilar helical-antenna RF coil with high B1+ field uniformity and large FOV for 3-T MRI","authors":"Pranav S. Athalye, Nada J. Šekeljić, Milan M. Ilić, Alexey A. Tonyushkin, Branislav M. Notaroš","doi":"10.1002/cmr.b.21326","DOIUrl":null,"url":null,"abstract":"<p>A novel method for excitation of RF <i>B</i><sub>1</sub> field in high-field (3-T) magnetic resonance imaging (MRI) systems using a subject-loaded quadrifilar helical antenna as an RF coil is proposed, evaluated, and demonstrated. Design, analysis, characterization, and evaluation of the novel coil when situated in a 3-T MRI bore and loaded with different phantoms are performed and cross-validated by extensive numerical simulations using multiple computational electromagnetics techniques. The results for the quadrifilar helical-antenna RF body coil show (a) strong field penetration in the entire phantoms; (b) excellent right-hand circular polarization (RCP); (c) high spatial uniformity of RCP RF magnetic field, B<sub>1</sub><sup>+</sup>, throughout the phantoms; (d) large field of view (FOV); (e) good transmit efficiency; and (f) low local specific absorption rate (SAR). The examples show that the new RF coil provides substantially better B<sub>1</sub><sup>+</sup>-field uniformity and much larger FOV than any of the previously reported numerical and experimental results for the existing RF coil designs at 3 T in literature that enable comparison. In addition, helical RF body coils of different lengths can, for instance, easily provide an excellent RCP and highly uniform B<sub>1</sub><sup>+</sup>-field within the MRI maximum FOV length of 50 cm, and even 100 cm. The proposed MRI RF coil yields a remarkable improvement in the field uniformity in the longitudinal direction, for various phantoms, with comparable efficiency and SAR levels.</p>","PeriodicalId":50623,"journal":{"name":"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering","volume":"46B 3","pages":"106-117"},"PeriodicalIF":0.9000,"publicationDate":"2016-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmr.b.21326","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmr.b.21326","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2
Abstract
A novel method for excitation of RF B1 field in high-field (3-T) magnetic resonance imaging (MRI) systems using a subject-loaded quadrifilar helical antenna as an RF coil is proposed, evaluated, and demonstrated. Design, analysis, characterization, and evaluation of the novel coil when situated in a 3-T MRI bore and loaded with different phantoms are performed and cross-validated by extensive numerical simulations using multiple computational electromagnetics techniques. The results for the quadrifilar helical-antenna RF body coil show (a) strong field penetration in the entire phantoms; (b) excellent right-hand circular polarization (RCP); (c) high spatial uniformity of RCP RF magnetic field, B1+, throughout the phantoms; (d) large field of view (FOV); (e) good transmit efficiency; and (f) low local specific absorption rate (SAR). The examples show that the new RF coil provides substantially better B1+-field uniformity and much larger FOV than any of the previously reported numerical and experimental results for the existing RF coil designs at 3 T in literature that enable comparison. In addition, helical RF body coils of different lengths can, for instance, easily provide an excellent RCP and highly uniform B1+-field within the MRI maximum FOV length of 50 cm, and even 100 cm. The proposed MRI RF coil yields a remarkable improvement in the field uniformity in the longitudinal direction, for various phantoms, with comparable efficiency and SAR levels.
期刊介绍:
Concepts in Magnetic Resonance Part B brings together engineers and physicists involved in the design and development of hardware and software employed in magnetic resonance techniques. The journal welcomes contributions predominantly from the fields of magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR), but also encourages submissions relating to less common magnetic resonance imaging and analytical methods.
Contributors come from both academia and industry, to report the latest advancements in the development of instrumentation and computer programming to underpin medical, non-medical, and analytical magnetic resonance techniques.