Efficient Generation of Anisotropic N-Field Microstructures From 2-Point Statistics Using Multi-Output Gaussian Random Fields

A. E. Robertson, S. Kalidindi
{"title":"Efficient Generation of Anisotropic N-Field Microstructures From 2-Point Statistics Using Multi-Output Gaussian Random Fields","authors":"A. E. Robertson, S. Kalidindi","doi":"10.2139/ssrn.3949516","DOIUrl":null,"url":null,"abstract":"The ability to efficiently generate microstructure instances corresponding to specified two-point statistics is a crucial capability in rigorously studying random heterogeneous materials within the Integrated Computational Materials Engineering and Materials Informatics frameworks. However, the lack of computationally efficient, statistically expressive models for achieving this transformation is a recurring roadblock in many foundational Materials Informatics challenges. In this article, we present a theoretical and computational framework for generating stationary, periodic microstructural instances corresponding to specified stationary, periodic two-point statistics by stochastically modeling the microstructure as an N-output Gaussian Random Field. First, we illustrate how two-point statistics can be used to parameterize anisotropic Gaussian Random Fields. Second, we derive analytic relationships between the two-point statistics and the spatially resolved sampled microstructures, within the approximation of a N-output Gaussian Random Field. Finally, we propose the algorithms necessary to efficiently sample these fields in O (S ln S) computational complexity and while incurring O (S) memory cost. We also discuss the current limitations of the proposed framework, and its usefulness to future Materials Informatics workflows.","PeriodicalId":7755,"journal":{"name":"AMI: Acta Materialia","volume":"100 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMI: Acta Materialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3949516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

The ability to efficiently generate microstructure instances corresponding to specified two-point statistics is a crucial capability in rigorously studying random heterogeneous materials within the Integrated Computational Materials Engineering and Materials Informatics frameworks. However, the lack of computationally efficient, statistically expressive models for achieving this transformation is a recurring roadblock in many foundational Materials Informatics challenges. In this article, we present a theoretical and computational framework for generating stationary, periodic microstructural instances corresponding to specified stationary, periodic two-point statistics by stochastically modeling the microstructure as an N-output Gaussian Random Field. First, we illustrate how two-point statistics can be used to parameterize anisotropic Gaussian Random Fields. Second, we derive analytic relationships between the two-point statistics and the spatially resolved sampled microstructures, within the approximation of a N-output Gaussian Random Field. Finally, we propose the algorithms necessary to efficiently sample these fields in O (S ln S) computational complexity and while incurring O (S) memory cost. We also discuss the current limitations of the proposed framework, and its usefulness to future Materials Informatics workflows.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多输出高斯随机场从两点统计有效生成各向异性n场微结构
在综合计算材料工程和材料信息学框架中,有效生成与指定两点统计相对应的微观结构实例的能力是严格研究随机异质材料的关键能力。然而,缺乏计算效率,统计表达模型来实现这种转变是许多基础材料信息学挑战中反复出现的障碍。在本文中,我们提出了一个理论和计算框架,通过将微观结构随机建模为n输出高斯随机场,生成与指定平稳周期两点统计相对应的平稳周期微观结构实例。首先,我们说明如何使用两点统计来参数化各向异性高斯随机场。其次,在n输出高斯随机场的近似范围内,我们推导了两点统计量与空间分辨采样微观结构之间的解析关系。最后,我们提出了在O (S)的计算复杂度和O (S)的内存成本下有效采样这些字段所需的算法。我们还讨论了目前提出的框架的局限性,以及它对未来材料信息学工作流程的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gradient Plastic Zone Model in Equiatomic Face-Centered Cubic Alloys Modelling of Additive Manufacturability of Nickel-Based Superalloys for Laser Powder Bed Fusion Revealing the Mode and Strain of Reversible Twinning in B19' Martensite by in situ Synchrotron X-Ray Diffraction Efficient Generation of Anisotropic N-Field Microstructures From 2-Point Statistics Using Multi-Output Gaussian Random Fields Liquid Cell Transmission Electron Microscopy Reveals C-S-H Growth Mechanism During Portland Cement Hydration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1