{"title":"Liquid Cell Transmission Electron Microscopy Reveals C-S-H Growth Mechanism During Portland Cement Hydration","authors":"P. Dong, A. Allahverdi, C. Andrei, N. Bassim","doi":"10.2139/ssrn.3940187","DOIUrl":null,"url":null,"abstract":"We report the first application of in-situ liquid cell transmission electron microscopy (LC-TEM) to research hydration reactions of nano OPC, providing nanoscale insight into early reaction mechanisms. We demonstrate that the formation and growth of C-S-H precipitates starts through lateral growth of planar silicate sheets, but soon continues in all directions resulting in a 3D microstructure. Furthermore, nanocrystalline C-S-H structures with sizes between 5 nm to 10 nm were observed inside the amorphous or highly disordered C-S-H matrix, denoting that C-S-H growth is conformed to layered structure model. Crack formation and propagation inside C-S-H precipitates confirms the presence of increasing lattice strain due to growing defects that limits the growth of a fully crystalline structure by buckling and separating the sheets. The rolling up and crumbling of C-S-H sheets promotes the formation of new embryos, leading to the growth of precipitates in all direction and finally their coalescence.","PeriodicalId":7755,"journal":{"name":"AMI: Acta Materialia","volume":"31 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMI: Acta Materialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3940187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We report the first application of in-situ liquid cell transmission electron microscopy (LC-TEM) to research hydration reactions of nano OPC, providing nanoscale insight into early reaction mechanisms. We demonstrate that the formation and growth of C-S-H precipitates starts through lateral growth of planar silicate sheets, but soon continues in all directions resulting in a 3D microstructure. Furthermore, nanocrystalline C-S-H structures with sizes between 5 nm to 10 nm were observed inside the amorphous or highly disordered C-S-H matrix, denoting that C-S-H growth is conformed to layered structure model. Crack formation and propagation inside C-S-H precipitates confirms the presence of increasing lattice strain due to growing defects that limits the growth of a fully crystalline structure by buckling and separating the sheets. The rolling up and crumbling of C-S-H sheets promotes the formation of new embryos, leading to the growth of precipitates in all direction and finally their coalescence.