Efficient bundle adjustment with virtual key frames: a hierarchical approach to multi-frame structure from motion

H. Shum, Zhengyou Zhang, Qifa Ke
{"title":"Efficient bundle adjustment with virtual key frames: a hierarchical approach to multi-frame structure from motion","authors":"H. Shum, Zhengyou Zhang, Qifa Ke","doi":"10.1109/CVPR.1999.784733","DOIUrl":null,"url":null,"abstract":"In this paper we present an efficient hierarchical approach to structure from motion for long image sequences. There are two key elements to our approach: accurate 3D reconstruction for each segment and efficient bundle adjustment for the whole sequence. The image sequence is first divided into a number of segments so that feature points can be reliably tracked across each segment. Each segment has a long baseline to ensure accurate 3D reconstruction. To efficiently bundle adjust 3D structures from ail segments, we reduce the number of frames in each segment by introducing \"virtual keyframes\". The virtual frames encode the 3D structure of each segment along with its uncertainty but they form a small subset of the original frames. Our method achieves significant speedup over conventional bundle adjustment methods.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"316 1","pages":"538-543 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 81

Abstract

In this paper we present an efficient hierarchical approach to structure from motion for long image sequences. There are two key elements to our approach: accurate 3D reconstruction for each segment and efficient bundle adjustment for the whole sequence. The image sequence is first divided into a number of segments so that feature points can be reliably tracked across each segment. Each segment has a long baseline to ensure accurate 3D reconstruction. To efficiently bundle adjust 3D structures from ail segments, we reduce the number of frames in each segment by introducing "virtual keyframes". The virtual frames encode the 3D structure of each segment along with its uncertainty but they form a small subset of the original frames. Our method achieves significant speedup over conventional bundle adjustment methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于虚拟关键帧的有效束调整:一种从运动到多帧结构的分层方法
在本文中,我们提出了一种有效的从运动中构造长图像序列的分层方法。我们的方法有两个关键要素:每个片段的精确3D重建和整个序列的有效束调整。首先将图像序列划分为多个片段,以便在每个片段上可靠地跟踪特征点。每个部分都有很长的基线,以确保准确的3D重建。为了有效地从所有片段中捆绑调整3D结构,我们通过引入“虚拟关键帧”来减少每个片段中的帧数。虚拟帧编码了每个片段的三维结构及其不确定性,但它们只是原始帧的一小部分。与传统的束调整方法相比,我们的方法实现了显著的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual signature verification using affine arc-length A novel Bayesian method for fitting parametric and non-parametric models to noisy data Material classification for 3D objects in aerial hyperspectral images Deformable template and distribution mixture-based data modeling for the endocardial contour tracking in an echographic sequence Applying perceptual grouping to content-based image retrieval: building images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1