P. Porambage, Jarno Pinola, Yasintha Rumesh, Chen Tao, J. Huusko
{"title":"XcARet: XAI based Green Security Architecture for Resilient Open Radio Access Networks in 6G","authors":"P. Porambage, Jarno Pinola, Yasintha Rumesh, Chen Tao, J. Huusko","doi":"10.1109/EuCNC/6GSummit58263.2023.10188316","DOIUrl":null,"url":null,"abstract":"The fixed security solutions and related security configurations may no longer meet the diverse requirements of 6G networks. Open Radio Access Network (O-RAN) architecture is going to be one key entry point to 6G where the direct user access is granted. O-RAN promotes the design, deployment and operation of the RAN with open interfaces and optimized by intelligent controllers. O-RAN networks are to be implemented as multi-vendor systems with interoperable components and can be programmatically optimized through centralized abstraction layer and data driven closed-loop control. However, since O-RAN contains many new open interfaces and data flows, new security issues may emerge. Providing the recommendations for dynamic security policy adjustments by considering the energy availability and risk or security level of the network is something lacking in the current state-of-the-art. When the security process is managed and executed in an autonomous way, it must also assure the transparency of the security policy adjustments and provide the reasoning behind the adjustment decisions to the interested parties whenever needed. Moreover, the energy consumption for such security solutions are constantly bringing overhead to the networking devices. Therefore, in this paper we discuss XAI based green security architecture for resilient open radio access networks in 6G known as XcARet for providing cognitive and transparent security solutions for O-RAN in a more energy efficient manner.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"18 1","pages":"699-704"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"公共管理高层论坛","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The fixed security solutions and related security configurations may no longer meet the diverse requirements of 6G networks. Open Radio Access Network (O-RAN) architecture is going to be one key entry point to 6G where the direct user access is granted. O-RAN promotes the design, deployment and operation of the RAN with open interfaces and optimized by intelligent controllers. O-RAN networks are to be implemented as multi-vendor systems with interoperable components and can be programmatically optimized through centralized abstraction layer and data driven closed-loop control. However, since O-RAN contains many new open interfaces and data flows, new security issues may emerge. Providing the recommendations for dynamic security policy adjustments by considering the energy availability and risk or security level of the network is something lacking in the current state-of-the-art. When the security process is managed and executed in an autonomous way, it must also assure the transparency of the security policy adjustments and provide the reasoning behind the adjustment decisions to the interested parties whenever needed. Moreover, the energy consumption for such security solutions are constantly bringing overhead to the networking devices. Therefore, in this paper we discuss XAI based green security architecture for resilient open radio access networks in 6G known as XcARet for providing cognitive and transparent security solutions for O-RAN in a more energy efficient manner.