Sim-to-Real Transfer in Multi-agent Reinforcement Networking for Federated Edge Computing

Pinyarash Pinyoanuntapong, Tagore Pothuneedi, Ravikumar Balakrishnan, Minwoo Lee, Chen Chen, Pu Wang
{"title":"Sim-to-Real Transfer in Multi-agent Reinforcement Networking for Federated Edge Computing","authors":"Pinyarash Pinyoanuntapong, Tagore Pothuneedi, Ravikumar Balakrishnan, Minwoo Lee, Chen Chen, Pu Wang","doi":"10.1145/3453142.3491419","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL) over wireless multi-hop edge computing networks, i.e., multi-hop FL, is a cost-effective distributed on-device deep learning paradigm. This paper presents FedEdge simulator, a high-fidelity Linux-based simulator, which enables fast prototyping, sim-to-real code, and knowledge transfer for multi-hop FL systems. FedEdge simulator is built on top of the hardware-oriented FedEdge experimental framework with a new extension of the realistic physical layer emulator. This emulator exploits trace-based channel modeling and dynamic link scheduling to minimize the reality gap between the simulator and the physical testbed. Our initial experiments demonstrate the high fidelity of the FedEdge simulator and its superior performance on sim-to-real knowledge transfer in reinforcement learning -optimized multi-hop FL.","PeriodicalId":6779,"journal":{"name":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"56 1","pages":"355-360"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453142.3491419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Federated Learning (FL) over wireless multi-hop edge computing networks, i.e., multi-hop FL, is a cost-effective distributed on-device deep learning paradigm. This paper presents FedEdge simulator, a high-fidelity Linux-based simulator, which enables fast prototyping, sim-to-real code, and knowledge transfer for multi-hop FL systems. FedEdge simulator is built on top of the hardware-oriented FedEdge experimental framework with a new extension of the realistic physical layer emulator. This emulator exploits trace-based channel modeling and dynamic link scheduling to minimize the reality gap between the simulator and the physical testbed. Our initial experiments demonstrate the high fidelity of the FedEdge simulator and its superior performance on sim-to-real knowledge transfer in reinforcement learning -optimized multi-hop FL.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向联邦边缘计算的多智能体强化网络中的模拟到真实传输
基于无线多跳边缘计算网络的联邦学习(FL),即多跳FL,是一种具有成本效益的分布式设备上深度学习范式。本文介绍了FedEdge模拟器,一个基于linux的高保真模拟器,它可以实现多跳FL系统的快速原型设计,模拟到真实的代码和知识转移。FedEdge模拟器建立在面向硬件的FedEdge实验框架之上,并对现实物理层模拟器进行了新的扩展。该仿真器利用基于跟踪的信道建模和动态链路调度来最小化仿真器与物理测试平台之间的现实差距。我们的初步实验证明了FedEdge模拟器的高保真度及其在强化学习优化多跳FL中的模拟到真实知识转移方面的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data-Driven Optimal Control Decision-Making System for Multiple Autonomous Vehicles The Performance Argument for Blockchain-based Edge DNS Caching LotteryFL: Empower Edge Intelligence with Personalized and Communication-Efficient Federated Learning Collaborative Cloud-Edge-Local Computation Offloading for Multi-Component Applications Poster: Enabling Flexible Edge-assisted XR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1