Framework for combination aware AU intensity recognition

Isabel Gonzalez, W. Verhelst, Meshia Cédric Oveneke, H. Sahli, D. Jiang
{"title":"Framework for combination aware AU intensity recognition","authors":"Isabel Gonzalez, W. Verhelst, Meshia Cédric Oveneke, H. Sahli, D. Jiang","doi":"10.1109/ACII.2015.7344631","DOIUrl":null,"url":null,"abstract":"We present a framework for combination aware AU intensity recognition. It includes a feature extraction approach that can handle small head movements which does not require face alignment. A three layered structure is used for the AU classification. The first layer is dedicated to independent AU recognition, and the second layer incorporates AU combination knowledge. At a third layer, AU dynamics are handled based on variable duration semi-Markov model. The first two layers are modeled using extreme learning machines (ELMs). ELMs have equal performance to support vector machines but are computationally more efficient, and can handle multi-class classification directly. Moreover, they include feature selection via manifold regularization. We show that the proposed layered classification scheme can improve results by considering AU combinations as well as intensity recognition.","PeriodicalId":6863,"journal":{"name":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","volume":"21 1","pages":"602-608"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACII.2015.7344631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a framework for combination aware AU intensity recognition. It includes a feature extraction approach that can handle small head movements which does not require face alignment. A three layered structure is used for the AU classification. The first layer is dedicated to independent AU recognition, and the second layer incorporates AU combination knowledge. At a third layer, AU dynamics are handled based on variable duration semi-Markov model. The first two layers are modeled using extreme learning machines (ELMs). ELMs have equal performance to support vector machines but are computationally more efficient, and can handle multi-class classification directly. Moreover, they include feature selection via manifold regularization. We show that the proposed layered classification scheme can improve results by considering AU combinations as well as intensity recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
组合感知AU强度识别框架
提出了一种组合感知AU强度识别框架。它包括一种特征提取方法,可以处理不需要面部对齐的小头部运动。AU分类采用三层结构。第一层用于独立AU识别,第二层包含AU组合知识。在第三层,基于可变持续时间半马尔可夫模型处理AU动态。前两层使用极限学习机(elm)建模。elm具有与支持向量机相当的性能,但计算效率更高,并且可以直接处理多类分类。此外,它们还包括通过流形正则化进行特征选择。我们表明,通过考虑AU组合和强度识别,提出的分层分类方案可以改善结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Avatar and participant gender differences in the perception of uncanniness of virtual humans Neural conditional ordinal random fields for agreement level estimation Fundamental frequency modeling using wavelets for emotional voice conversion Bimodal feature-based fusion for real-time emotion recognition in a mobile context Harmony search for feature selection in speech emotion recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1