Multi-objective Integer Programming Approaches for Solving Optimal Feature Selection Problem: A New Perspective on Multi-objective Optimization Problems in SBSE

Yinxing Xue, Yanfu Li
{"title":"Multi-objective Integer Programming Approaches for Solving Optimal Feature Selection Problem: A New Perspective on Multi-objective Optimization Problems in SBSE","authors":"Yinxing Xue, Yanfu Li","doi":"10.1145/3180155.3180257","DOIUrl":null,"url":null,"abstract":"The optimal feature selection problem in software product line is typically addressed by the approaches based on Indicator-based Evolutionary Algorithm (IBEA). In this study, we frst expose the mathematical nature of this problem — multi-objective binary integer linear programming. Then, we implement/propose three mathematical programming approaches to solve this problem at di?erent scales. For small-scale problems (roughly, less than 100 features), we implement two established approaches to fnd all exact solutions. For medium-to-large problems (roughly, more than 100 features), we propose one efcient approach that can generate a representation of the entire Pareto front in linear time complexity. The empirical results show that our proposed method can fnd signifcantly more non-dominated solutions in similar or less execution time, in comparison with IBEA and its recent enhancement (i.e., IBED that combines IBEA and Di?erential Evolution).","PeriodicalId":6560,"journal":{"name":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","volume":"315 1","pages":"1231-1242"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3180155.3180257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The optimal feature selection problem in software product line is typically addressed by the approaches based on Indicator-based Evolutionary Algorithm (IBEA). In this study, we frst expose the mathematical nature of this problem — multi-objective binary integer linear programming. Then, we implement/propose three mathematical programming approaches to solve this problem at di?erent scales. For small-scale problems (roughly, less than 100 features), we implement two established approaches to fnd all exact solutions. For medium-to-large problems (roughly, more than 100 features), we propose one efcient approach that can generate a representation of the entire Pareto front in linear time complexity. The empirical results show that our proposed method can fnd signifcantly more non-dominated solutions in similar or less execution time, in comparison with IBEA and its recent enhancement (i.e., IBED that combines IBEA and Di?erential Evolution).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求解最优特征选择问题的多目标整数规划方法:SBSE多目标优化问题的新视角
基于指标进化算法(IBEA)的方法是解决软件产品线最优特征选择问题的典型方法。在这项研究中,我们首先揭示了这个问题的数学本质-多目标二进制整数线性规划。然后,我们实现/提出了三种数学规划方法来解决这个问题。不同尺度。对于小规模问题(大约少于100个特征),我们实现了两种既定方法来找到所有精确解。对于大中型问题(大约超过100个特征),我们提出了一种有效的方法,可以在线性时间复杂度中生成整个帕累托前沿的表示。实证结果表明,与IBEA及其最近的改进(即结合IBEA和Di?为进化)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Launch-Mode-Aware Context-Sensitive Activity Transition Analysis A Combinatorial Approach for Exposing Off-Nominal Behaviors Perses: Syntax-Guided Program Reduction Fine-Grained Test Minimization From UI Design Image to GUI Skeleton: A Neural Machine Translator to Bootstrap Mobile GUI Implementation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1