Few-Shot Table-to-Text Generation with Prompt Planning and Knowledge Memorization

ArXiv Pub Date : 2023-02-09 DOI:10.48550/arXiv.2302.04415
Zhixin Guo, Minyxuan Yan, Jiexing Qi, Jianping Zhou, Ziwei He, Zhouhan Lin, Guanjie Zheng, Xinbing Wang
{"title":"Few-Shot Table-to-Text Generation with Prompt Planning and Knowledge Memorization","authors":"Zhixin Guo, Minyxuan Yan, Jiexing Qi, Jianping Zhou, Ziwei He, Zhouhan Lin, Guanjie Zheng, Xinbing Wang","doi":"10.48550/arXiv.2302.04415","DOIUrl":null,"url":null,"abstract":"Pre-trained language models (PLM) have achieved remarkable advancement in table-to-text generation tasks. However, the lack of labeled domain-specific knowledge and the topology gap between tabular data and text make it difficult for PLMs to yield faithful text. Low-resource generation likewise faces unique challenges in this domain. Inspired by how humans descript tabular data with prior knowledge, we suggest a new framework: PromptMize, which targets table-to-text generation under few-shot settings. The design of our framework consists of two aspects: a prompt planner and a knowledge adapter. The prompt planner aims to generate a prompt signal that provides instance guidance for PLMs to bridge the topology gap between tabular data and text. Moreover, the knowledge adapter memorizes domain-specific knowledge from the unlabelled corpus to supply essential information during generation. Extensive experiments and analyses are investigated on three open domain few-shot NLG datasets: human, song, and book. Compared with previous state-of-the-art approaches, our model achieves remarkable performance in generating quality as judged by human and automatic evaluations.","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":"55 7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.04415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Pre-trained language models (PLM) have achieved remarkable advancement in table-to-text generation tasks. However, the lack of labeled domain-specific knowledge and the topology gap between tabular data and text make it difficult for PLMs to yield faithful text. Low-resource generation likewise faces unique challenges in this domain. Inspired by how humans descript tabular data with prior knowledge, we suggest a new framework: PromptMize, which targets table-to-text generation under few-shot settings. The design of our framework consists of two aspects: a prompt planner and a knowledge adapter. The prompt planner aims to generate a prompt signal that provides instance guidance for PLMs to bridge the topology gap between tabular data and text. Moreover, the knowledge adapter memorizes domain-specific knowledge from the unlabelled corpus to supply essential information during generation. Extensive experiments and analyses are investigated on three open domain few-shot NLG datasets: human, song, and book. Compared with previous state-of-the-art approaches, our model achieves remarkable performance in generating quality as judged by human and automatic evaluations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
几次表格到文本的生成,及时规划和知识记忆
预训练语言模型(PLM)在表到文本生成任务中取得了显著的进步。然而,缺乏标记的领域特定知识以及表格数据和文本之间的拓扑差距使得plm难以生成忠实的文本。低资源发电在这一领域也面临着独特的挑战。受人类如何用先验知识描述表格数据的启发,我们提出了一个新的框架:PromptMize,它的目标是在几次设置下生成表格到文本。我们的框架设计包括两个方面:提示计划器和知识适配器。提示计划器旨在生成提示信号,为plm提供实例指导,以弥合表格数据和文本之间的拓扑差距。此外,知识适配器从未标记的语料库中记忆特定于领域的知识,以便在生成过程中提供必要的信息。本文对人类、歌曲和书籍这三个开放域少镜头NLG数据集进行了广泛的实验和分析。与以前最先进的方法相比,我们的模型在通过人工和自动评估来判断生成质量方面取得了显着的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive Strategies for the Control of Complex Motor Skills: Recent Insights into Individual and Joint Actions. A Workflow to Create a High-Quality Protein-Ligand Binding Dataset for Training, Validation, and Prediction Tasks. Generating Novel Brain Morphology by Deforming Learned Templates. Node-reconfiguring multilayer networks of human brain function. Predicting Heteropolymer Phase Separation Using Two-Chain Contact Maps.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1