Context Aware Recommender Systems: A Novel Approach Based on Matrix Factorization and Contextual Bias

IF 2.6 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Electronics Pub Date : 2022-03-24 DOI:10.3390/electronics11071003
M. Casillo, B. B. Gupta, Marco Lombardi, Angelo Lorusso, D. Santaniello, Carmine Valentino
{"title":"Context Aware Recommender Systems: A Novel Approach Based on Matrix Factorization and Contextual Bias","authors":"M. Casillo, B. B. Gupta, Marco Lombardi, Angelo Lorusso, D. Santaniello, Carmine Valentino","doi":"10.3390/electronics11071003","DOIUrl":null,"url":null,"abstract":"In the world of Big Data, a tool capable of filtering data and providing choice support is crucial. Recommender Systems have this aim. These have evolved further through the use of information that would improve the ability to suggest. Among the possible exploited information, the context is widely used in literature and leads to the definition of the Context-Aware Recommender System. This paper proposes a Context-Aware Recommender System based on the concept of embedded context. This technique has been tested on different datasets to evaluate its accuracy. In particular, the use of multiple datasets allows a deep analysis of the advantages and disadvantages of the proposed approach. The numerical results obtained are promising.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"70 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics11071003","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 14

Abstract

In the world of Big Data, a tool capable of filtering data and providing choice support is crucial. Recommender Systems have this aim. These have evolved further through the use of information that would improve the ability to suggest. Among the possible exploited information, the context is widely used in literature and leads to the definition of the Context-Aware Recommender System. This paper proposes a Context-Aware Recommender System based on the concept of embedded context. This technique has been tested on different datasets to evaluate its accuracy. In particular, the use of multiple datasets allows a deep analysis of the advantages and disadvantages of the proposed approach. The numerical results obtained are promising.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
上下文感知推荐系统:一种基于矩阵分解和上下文偏差的新方法
在大数据的世界里,一个能够过滤数据并提供选择支持的工具至关重要。推荐系统就是这样一个目标。通过使用能够提高建议能力的信息,这些能力得到了进一步发展。在可能被利用的信息中,上下文在文献中被广泛使用,并导致了上下文感知推荐系统的定义。本文提出了一种基于嵌入式上下文概念的上下文感知推荐系统。该技术已经在不同的数据集上进行了测试,以评估其准确性。特别是,使用多个数据集可以深入分析所提出方法的优点和缺点。得到的数值结果是令人满意的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electronics
Electronics Computer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍: Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.
期刊最新文献
A Deep Reinforcement Learning Method Based on a Transformer Model for the Flexible Job Shop Scheduling Problem Performance Evaluation of UDP-Based Data Transmission with Acknowledgment for Various Network Topologies in IoT Environments Multimodal Social Media Fake News Detection Based on 1D-CCNet Attention Mechanism Real-Time Semantic Segmentation Algorithm for Street Scenes Based on Attention Mechanism and Feature Fusion Attention-Enhanced Guided Multimodal and Semi-Supervised Networks for Visual Acuity (VA) Prediction after Anti-VEGF Therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1