An Improved Prediction Method of Protein Disulfide Bond

Pengfei Sun, Yunhong Ding
{"title":"An Improved Prediction Method of Protein Disulfide Bond","authors":"Pengfei Sun, Yunhong Ding","doi":"10.1109/ICISCE.2016.183","DOIUrl":null,"url":null,"abstract":"The paper presents a method to predict disulfide bond structure based on sample selection and Classifiers Fusion Technology. Firstly, the codes of the selected protein sequence are used as the input data of RBF neural network. Then the different sizes of the information windows were selected to construct the prediction models of disulfide bond. At last, the final prediction will be obtain from fusing different forecasting models. The result of above simulation experiments shows that the prediction model based on classifier fusion technology can greatly increase prediction accuracy of the structure of protein disulfide bond.","PeriodicalId":6882,"journal":{"name":"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCE.2016.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents a method to predict disulfide bond structure based on sample selection and Classifiers Fusion Technology. Firstly, the codes of the selected protein sequence are used as the input data of RBF neural network. Then the different sizes of the information windows were selected to construct the prediction models of disulfide bond. At last, the final prediction will be obtain from fusing different forecasting models. The result of above simulation experiments shows that the prediction model based on classifier fusion technology can greatly increase prediction accuracy of the structure of protein disulfide bond.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进的蛋白质二硫键预测方法
提出了一种基于样本选择和分类器融合技术的二硫键结构预测方法。首先,将选取的蛋白质序列编码作为RBF神经网络的输入数据;然后选择不同大小的信息窗口构建二硫键的预测模型。最后,将不同的预测模型进行融合得到最终的预测结果。上述仿真实验结果表明,基于分类器融合技术的预测模型可以大大提高蛋白质二硫键结构的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Method for Color Calibration Based on Simulated Annealing Optimization Temperature Analysis in the Fused Deposition Modeling Process Classification of Hyperspectral Image Based on K-Means and Structured Sparse Coding Analysis and Prediction of Epilepsy Based on Visibility Graph Design of Control System for a Rehabilitation Device for Joints of Lower Limbs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1