Real-time classification performance and failure mode analysis of a physical/chemical sensor array and a probabilistic neural network

Sean J. Hart, Mark H. Hammond, Jennifer T. Wong, Mark T. Wright, Daniel T. Gottuk, Susan L. Rose-Pehrsson, Frederick W. Williams
{"title":"Real-time classification performance and failure mode analysis of a physical/chemical sensor array and a probabilistic neural network","authors":"Sean J. Hart,&nbsp;Mark H. Hammond,&nbsp;Jennifer T. Wong,&nbsp;Mark T. Wright,&nbsp;Daniel T. Gottuk,&nbsp;Susan L. Rose-Pehrsson,&nbsp;Frederick W. Williams","doi":"10.1002/fact.10004","DOIUrl":null,"url":null,"abstract":"<p>The U.S. Navy program Damage Control-Automation for Reduced Manning is focused on enhancing automation of ship functions and damage control systems. A key element of this objective is the improvement of current fire-detection systems. An early warning fire-detection system is being developed by properly processing the output from sensors that measure different physical and chemical parameters of a developing fire or from analyzing multiple aspects of a given sensor output (e.g., rate of change as well as absolute value). The classification and speed of the probabilistic neural network (PNN), deployed in real-time, have been evaluated during a recent field test aboard the ex-USS SHADWELL, the Advanced Damage Control Fire Research Platform of the Naval Research Laboratory. The real-time performance is documented and as a result of optimization efforts, improvements in performance have been recognized. Early fire detection, while maintaining nuisance source immunity, has been demonstrated. A detailed examination of the PNN during fire testing has been undertaken. Using real and simulated data, a variety of scenarios (taken from recent field experiences) have been used or recreated for the purpose of understanding potential failure modes of the PNN in this application. © 2001 John Wiley &amp; Sons, Inc. Field Analyt Chem Technol 5: 244–258, 2001</p>","PeriodicalId":100527,"journal":{"name":"Field Analytical Chemistry & Technology","volume":"5 5","pages":"244-258"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/fact.10004","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Field Analytical Chemistry & Technology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fact.10004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The U.S. Navy program Damage Control-Automation for Reduced Manning is focused on enhancing automation of ship functions and damage control systems. A key element of this objective is the improvement of current fire-detection systems. An early warning fire-detection system is being developed by properly processing the output from sensors that measure different physical and chemical parameters of a developing fire or from analyzing multiple aspects of a given sensor output (e.g., rate of change as well as absolute value). The classification and speed of the probabilistic neural network (PNN), deployed in real-time, have been evaluated during a recent field test aboard the ex-USS SHADWELL, the Advanced Damage Control Fire Research Platform of the Naval Research Laboratory. The real-time performance is documented and as a result of optimization efforts, improvements in performance have been recognized. Early fire detection, while maintaining nuisance source immunity, has been demonstrated. A detailed examination of the PNN during fire testing has been undertaken. Using real and simulated data, a variety of scenarios (taken from recent field experiences) have been used or recreated for the purpose of understanding potential failure modes of the PNN in this application. © 2001 John Wiley & Sons, Inc. Field Analyt Chem Technol 5: 244–258, 2001

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物理/化学传感器阵列和概率神经网络的实时分类性能和失效模式分析
美国海军减员损伤控制-自动化项目的重点是增强船舶功能和损伤控制系统的自动化。这一目标的一个关键要素是改进目前的火灾探测系统。目前正在通过适当处理测量正在发生的火灾的不同物理和化学参数的传感器的输出或通过分析给定传感器输出的多个方面(例如,变化率和绝对值)的输出来发展一种早期预警火灾探测系统。在最近的一次现场测试中,实时部署的概率神经网络(PNN)的分类和速度已经在海军研究实验室的先进损伤控制火力研究平台前uss SHADWELL上进行了评估。实时性能被记录下来,作为优化工作的结果,性能的改进得到了认可。早期火灾探测,同时保持滋扰源免疫,已被证明。在火灾试验期间对PNN进行了详细检查。使用真实和模拟数据,为了了解PNN在该应用中的潜在失效模式,已经使用或重新创建了各种场景(取自最近的现场经验)。©2001 John Wiley &儿子,Inc。化学工程学报(英文版),2001
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technological innovation in field analytical chemistry A compact optical system for multi-determination of biochemical oxygen demand using disposable strips On-site gas chromatographic determination of explosives in soils Real-time classification performance and failure mode analysis of a physical/chemical sensor array and a probabilistic neural network Minicolumn field sampling and flow-injection-atomic absorption spectrometric determination of lead in seawater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1