Using a lightweight Siamese neural network for generating a feature vector in a vascular authentication system

IF 1.1 Q4 OPTICS Computer Optics Pub Date : 2023-06-01 DOI:10.18287/2412-6179-co-1204
D. Prozorov, A. Zemtsov
{"title":"Using a lightweight Siamese neural network for generating a feature vector in a vascular authentication system","authors":"D. Prozorov, A. Zemtsov","doi":"10.18287/2412-6179-co-1204","DOIUrl":null,"url":null,"abstract":"The article analyzes the possibility of using a Siamese convolutional neural network to solve the problem of vascular authentication on an embedded hardware platform with limited computing resources (Orange Pi One). The authors give a brief review of modern methods for calculating image feature vectors used in the tasks of classifying, comparing or searching for images by content: based on variational series (histograms), local descriptors, singular point descriptors, descriptors based on hash functions, neural network descriptors. They suggest using the architecture of a biometric authentication system (BAS) based on images of palms in the visible and near-IR spectra based on a Siamese convolutional neural network. The developed software solution allows using the Siamese neural network in the \"full network\" (both symmetrical channels of the neural network are used) and \"half of the neural network\" (only one channel is used) modes to reduce the time for comparing biometric data vectors - images of the palms of registered BAS users. The authors demonstrate advantages of the neural network features: universality, scalability and competitiveness, including on embedded hardware and software solutions with limited computing resources without graphics accelerators. The studies have shown that using the Siamese neural network, the \"overall accuracy\" of palm image classification can be improved from 0.929 to 0.968 when compared with the image vectorization method based on a perceptual hash, while showing a comparable authentication time for individuals registered in BAS. In the experiments, the authors use a database of 2,000 images for 400 people.","PeriodicalId":46692,"journal":{"name":"Computer Optics","volume":"27 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The article analyzes the possibility of using a Siamese convolutional neural network to solve the problem of vascular authentication on an embedded hardware platform with limited computing resources (Orange Pi One). The authors give a brief review of modern methods for calculating image feature vectors used in the tasks of classifying, comparing or searching for images by content: based on variational series (histograms), local descriptors, singular point descriptors, descriptors based on hash functions, neural network descriptors. They suggest using the architecture of a biometric authentication system (BAS) based on images of palms in the visible and near-IR spectra based on a Siamese convolutional neural network. The developed software solution allows using the Siamese neural network in the "full network" (both symmetrical channels of the neural network are used) and "half of the neural network" (only one channel is used) modes to reduce the time for comparing biometric data vectors - images of the palms of registered BAS users. The authors demonstrate advantages of the neural network features: universality, scalability and competitiveness, including on embedded hardware and software solutions with limited computing resources without graphics accelerators. The studies have shown that using the Siamese neural network, the "overall accuracy" of palm image classification can be improved from 0.929 to 0.968 when compared with the image vectorization method based on a perceptual hash, while showing a comparable authentication time for individuals registered in BAS. In the experiments, the authors use a database of 2,000 images for 400 people.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用轻量级的Siamese神经网络在血管认证系统中生成特征向量
本文分析了在计算资源有限的嵌入式硬件平台(Orange Pi One)上使用连体卷积神经网络解决血管认证问题的可能性。作者简要回顾了用于图像分类、比较或按内容搜索任务的图像特征向量计算的现代方法:基于变分序列(直方图)、局部描述符、奇点描述符、基于哈希函数的描述符、神经网络描述符。他们建议使用基于暹罗卷积神经网络的手掌可见光和近红外光谱图像的生物识别认证系统(BAS)架构。开发的软件解决方案允许在“全网络”(使用神经网络的两个对称通道)和“半神经网络”(仅使用一个通道)模式下使用Siamese神经网络,以减少比较生物特征数据向量(注册BAS用户的手掌图像)的时间。作者展示了神经网络特征的优势:通用性、可扩展性和竞争力,包括在没有图形加速器的有限计算资源的嵌入式硬件和软件解决方案上。研究表明,使用Siamese神经网络,与基于感知哈希的图像矢量化方法相比,掌纹图像分类的“整体准确率”可以从0.929提高到0.968,同时对在BAS中注册的个体具有相当的认证时间。在实验中,作者使用了一个包含400人的2000张图像的数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Optics
Computer Optics OPTICS-
CiteScore
4.20
自引率
10.00%
发文量
73
审稿时长
9 weeks
期刊介绍: The journal is intended for researchers and specialists active in the following research areas: Diffractive Optics; Information Optical Technology; Nanophotonics and Optics of Nanostructures; Image Analysis & Understanding; Information Coding & Security; Earth Remote Sensing Technologies; Hyperspectral Data Analysis; Numerical Methods for Optics and Image Processing; Intelligent Video Analysis. The journal "Computer Optics" has been published since 1987. Published 6 issues per year.
期刊最新文献
Six-wave interaction with double wavefront reversal in multimode waveguides with Kerr and thermal nonlinearities Generation and study of the synthetic brain electron microscopy dataset for segmentation purpose Gradient method for designing cascaded DOEs and its application in the problem of classifying handwritten digits Method of multilayer object sectioning based on a light scattering model Investigation of polarization transformations performed with a refractive bi-conical axicon using the FDTD method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1