A Hyper-Parameter Based Margin Calculation Algorithm for Single Flux Quantum Logic Cells

S. Shahsavani, Massoud Pedram
{"title":"A Hyper-Parameter Based Margin Calculation Algorithm for Single Flux Quantum Logic Cells","authors":"S. Shahsavani, Massoud Pedram","doi":"10.1109/ISVLSI.2019.00120","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method for evaluating the robustness of single flux quantum (SFQ) logic cells in a superconducting electronic circuit. The proposed method improves the state-of-the-art by accounting for the global sources of variation, clustering cell parameters into hyper-parameters, and considering the co-dependency of these hyper-parameters when calculating a feasible parameter region in which cell functions correctly, given any combination of the parameter values. The average parametric yield inside the reported feasible parameter region is more than 98%. Additionally, a machine learning based method is presented to estimate the parametric yield both inside and outside the feasible parameter region. The average accuracy of the developed yield model is 96% for five SFQ cells.","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"38 1","pages":"645-650"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a novel method for evaluating the robustness of single flux quantum (SFQ) logic cells in a superconducting electronic circuit. The proposed method improves the state-of-the-art by accounting for the global sources of variation, clustering cell parameters into hyper-parameters, and considering the co-dependency of these hyper-parameters when calculating a feasible parameter region in which cell functions correctly, given any combination of the parameter values. The average parametric yield inside the reported feasible parameter region is more than 98%. Additionally, a machine learning based method is presented to estimate the parametric yield both inside and outside the feasible parameter region. The average accuracy of the developed yield model is 96% for five SFQ cells.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于超参数的单通量量子逻辑单元余量计算算法
提出了一种评价超导电子电路中单通量量子逻辑单元鲁棒性的新方法。该方法考虑了全局变化源,将细胞参数聚类为超参数,并在给定任意参数值组合的情况下,在计算细胞正确运行的可行参数区域时考虑这些超参数的相互依赖性,从而提高了技术水平。在报告的可行参数范围内,平均参数成品率大于98%。此外,提出了一种基于机器学习的方法来估计可行参数区域内外的参数产量。对于5个SFQ细胞,所建立的产率模型的平均准确度为96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ferroelectric FET Based TCAM Designs for Energy Efficient Computing Evaluation of Compilers Effects on OpenMP Soft Error Resiliency Towards Efficient Compact Network Training on Edge-Devices PageCmp: Bandwidth Efficient Page Deduplication through In-memory Page Comparison Improving Logic Optimization in Sequential Circuits using Majority-inverter Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1