Comparison of SIFT and SURF Methods for Use on Hand Gesture Recognition based on Depth Map

Peter Sykora, Patrik Kamencay, Robert Hudec
{"title":"Comparison of SIFT and SURF Methods for Use on Hand Gesture Recognition based on Depth Map","authors":"Peter Sykora,&nbsp;Patrik Kamencay,&nbsp;Robert Hudec","doi":"10.1016/j.aasri.2014.09.005","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper a comparison between two popular feature extraction methods is presented. Scale-invariant feature transform (or SIFT) is the first method. The Speeded up robust features (or SURF) is presented as second. These two methods are tested on set of depth maps. Ten defined gestures of left hand are in these depth maps. The Microsoft Kinect camera is used for capturing the images <span>[1]</span>. The Support vector machine (or SVM) is used as classification method. The results are accuracy of SVM prediction on selected images.</p></div>","PeriodicalId":100008,"journal":{"name":"AASRI Procedia","volume":"9 ","pages":"Pages 19-24"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aasri.2014.09.005","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AASRI Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221267161400105X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

Abstract

In this paper a comparison between two popular feature extraction methods is presented. Scale-invariant feature transform (or SIFT) is the first method. The Speeded up robust features (or SURF) is presented as second. These two methods are tested on set of depth maps. Ten defined gestures of left hand are in these depth maps. The Microsoft Kinect camera is used for capturing the images [1]. The Support vector machine (or SVM) is used as classification method. The results are accuracy of SVM prediction on selected images.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SIFT与SURF方法在深度图手势识别中的比较
本文对两种常用的特征提取方法进行了比较。尺度不变特征变换(SIFT)是第一种方法。其次提出了加速鲁棒性特征(SURF)。在一组深度图上对这两种方法进行了测试。在这些深度图中有10个定义的左手手势。使用微软Kinect摄像头捕捉图像[1]。使用支持向量机(SVM)作为分类方法。结果表明,SVM对所选图像的预测精度较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preface Preface Preface Preface Classification of Wild Animals based on SVM and Local Descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1