Probing the eV-Mass range for solar axions with CAST

J. Vogel, H. Brauninger, G. Cantatore, J. Carmona, S. Cetin, J. Collar, T. Dafni, M. Davenport, C. Eleftheriadis, N. Elias, C. Ezer, G. Fanourakis, E. Ferrer-Ribas, H. Fischer, J. Franz, P. Friedrich, J. Galán, A. Gardikiotis, E. Gazis, T. Geralis, I. Giomataris, S. Gninenko, H. Gómez, E. Gruber, T. Guthorl, R. Hartmann, F. Haug, M. Hasinoff, D. Hoffmann, F. Iguaz, I. Irastorza, J. Jacoby, K. Jakovčić, D. Kang, T. Karageorgopoulou, M. Karuza, K. Konigsmann, R. Kotthaus, M. Krčmar, K. Kousouris, M. Kuster, B. Lakić, P. Lang, C. Lasseur, J. Laurent, A. Liolios, A. Ljubičić, V. Lozza, G. Lutz, G. Luzón, D. Miller, A. Mirizzi, J. Morales, T. Niinikoski, A. Nordt, T. Papaevangelou, M. Pivovaroff, G. Raiteri, G. Raffelt, T. Rashba, H. Riege, A. Rodriguez, M. Roșu, J. Ruz, I. Savvidis, Y. Semertzidis, P. Serpico, P. Silva, S. Solanki, R. Soufli, L. Stewart, A. Tomás, M. Tsagri, K. Van Bibber, T. Vafeiadis, J. Villar, J. Vogel, L. Walckiers, Y. Wong, S. C. Yıldız, K. Zioutas
{"title":"Probing the eV-Mass range for solar axions with CAST","authors":"J. Vogel, H. Brauninger, G. Cantatore, J. Carmona, S. Cetin, J. Collar, T. Dafni, M. Davenport, C. Eleftheriadis, N. Elias, C. Ezer, G. Fanourakis, E. Ferrer-Ribas, H. Fischer, J. Franz, P. Friedrich, J. Galán, A. Gardikiotis, E. Gazis, T. Geralis, I. Giomataris, S. Gninenko, H. Gómez, E. Gruber, T. Guthorl, R. Hartmann, F. Haug, M. Hasinoff, D. Hoffmann, F. Iguaz, I. Irastorza, J. Jacoby, K. Jakovčić, D. Kang, T. Karageorgopoulou, M. Karuza, K. Konigsmann, R. Kotthaus, M. Krčmar, K. Kousouris, M. Kuster, B. Lakić, P. Lang, C. Lasseur, J. Laurent, A. Liolios, A. Ljubičić, V. Lozza, G. Lutz, G. Luzón, D. Miller, A. Mirizzi, J. Morales, T. Niinikoski, A. Nordt, T. Papaevangelou, M. Pivovaroff, G. Raiteri, G. Raffelt, T. Rashba, H. Riege, A. Rodriguez, M. Roșu, J. Ruz, I. Savvidis, Y. Semertzidis, P. Serpico, P. Silva, S. Solanki, R. Soufli, L. Stewart, A. Tomás, M. Tsagri, K. Van Bibber, T. Vafeiadis, J. Villar, J. Vogel, L. Walckiers, Y. Wong, S. C. Yıldız, K. Zioutas","doi":"10.1109/NSSMIC.2010.5873777","DOIUrl":null,"url":null,"abstract":"The CERN Axion Solar Telescope (CAST) is searching for solar axions which could be produced in the core of the Sun via the so-called Primakoff effect. Not only would these hypothetical particles solve the strong CP problem, but they are also one of the favored candidates for dark matter. In order to look for axions originating from the Sun, CAST uses a decommissioned LHC prototype magnet. In its 10 m long magnetic field region of 9 Tesla, axions could be reconverted into X-ray photons. Different X-ray detectors are installed on both ends of the magnet, which is mounted on a structure built to follow the Sun during sunrise and sunset for a total of about 3 hours per day. The analysis of the data acquired during the first phase of the experiment with vacuum in the magnetic field region yielded the most restrictive experimental upper limit on the axion-to-photon coupling constant for axion masses up to about 0.02 eV. In order to extend the sensitivity of the experiment to a wider mass range, the CAST experiment continues its search for axions with helium in the magnet bores. In this way it is possible to restore coherence of conversion for larger masses. Changing the pressure of the helium gas enables the experiment to scan different axion masses in the range of up to about 1.2 eV. Especially at high pressures, a precise knowledge of the gas density distribution is crucial to obtain accurate results. In the first part of this second phase of CAST, 4He was used and the axion mass region was extended up to 0.39 eV, a part of phase space favored by axion models. In CAST's ongoing 3He phase the studied mass range is now being extended further. In this contribution the final results of CAST's 4He phase will be presented and the current status of the 3He run will be given. This includes latest results as well as prospects of future axion experiments.","PeriodicalId":13048,"journal":{"name":"IEEE Nuclear Science Symposuim & Medical Imaging Conference","volume":"28 1","pages":"342-346"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposuim & Medical Imaging Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2010.5873777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The CERN Axion Solar Telescope (CAST) is searching for solar axions which could be produced in the core of the Sun via the so-called Primakoff effect. Not only would these hypothetical particles solve the strong CP problem, but they are also one of the favored candidates for dark matter. In order to look for axions originating from the Sun, CAST uses a decommissioned LHC prototype magnet. In its 10 m long magnetic field region of 9 Tesla, axions could be reconverted into X-ray photons. Different X-ray detectors are installed on both ends of the magnet, which is mounted on a structure built to follow the Sun during sunrise and sunset for a total of about 3 hours per day. The analysis of the data acquired during the first phase of the experiment with vacuum in the magnetic field region yielded the most restrictive experimental upper limit on the axion-to-photon coupling constant for axion masses up to about 0.02 eV. In order to extend the sensitivity of the experiment to a wider mass range, the CAST experiment continues its search for axions with helium in the magnet bores. In this way it is possible to restore coherence of conversion for larger masses. Changing the pressure of the helium gas enables the experiment to scan different axion masses in the range of up to about 1.2 eV. Especially at high pressures, a precise knowledge of the gas density distribution is crucial to obtain accurate results. In the first part of this second phase of CAST, 4He was used and the axion mass region was extended up to 0.39 eV, a part of phase space favored by axion models. In CAST's ongoing 3He phase the studied mass range is now being extended further. In this contribution the final results of CAST's 4He phase will be presented and the current status of the 3He run will be given. This includes latest results as well as prospects of future axion experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用CAST探测太阳轴子的eV-Mass范围
欧洲核子研究中心的轴子太阳望远镜(CAST)正在寻找通过所谓的Primakoff效应在太阳核心产生的太阳轴子。这些假设的粒子不仅可以解决强CP问题,而且它们也是暗物质的首选候选者之一。为了寻找来自太阳的轴子,CAST使用了一个退役的大型强子对撞机原型磁铁。在其10米长的9特斯拉磁场区,轴子可以重新转化为x射线光子。不同的x射线探测器安装在磁体的两端,磁体安装在一个结构上,在日出和日落时每天跟随太阳大约3小时。对实验第一阶段在磁场区真空条件下获得的数据进行分析,得到了轴子-光子耦合常数最严格的实验上限,即轴子质量约为0.02 eV。为了将实验的灵敏度扩展到更大的质量范围,CAST实验继续在磁体孔中寻找含氦的轴子。这样就有可能恢复较大质量的转换相干性。通过改变氦气的压力,实验可以在1.2 eV范围内扫描不同的轴子质量。特别是在高压下,精确了解气体密度分布对于获得准确的结果至关重要。在CAST第二阶段的第一部分中,使用了4He,轴子质量区域扩展到0.39 eV,这是轴子模型所青睐的相空间的一部分。在CAST正在进行的3He阶段,研究的质量范围正在进一步扩大。在这篇文章中,将介绍CAST的4He阶段的最终结果,并给出3He运行的当前状态。这包括最新的结果以及未来轴子实验的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CaF2(Eu): An “Old” scintillator revisited Evaluation of the accuracy and robustness of a motion correction algorithm for PET using a novel phantom approach The performance of GridPix detectors Applying the neutron scatter camera to treaty verification and warhead monitoring Development of an 8-channel time based readout ASIC for PET applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1